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The U.S. Environmental Protection Agency (EPA) through its Office of Research and Develop-
ment funded and collaborated in the research described here under an Inter-Agency Agreement
with the Deparment of Energy’s Sandia National Laboratories (IAG # DW8992192801). This
document has been subjected to the Agency’s review, and has been approved for publication as
an EPA document. EPA does not endorese the purchase or sale of any commercial products or
services.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Accordingly, the United States Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or allow others to
do so for United States Government purposes. Neither Sandia Corporation, the United States
Government, nor any agency thereof, nor any of their employees makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately-owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by Sandia Corporation, the
United States Government, or any agency thereof. The views and opinions expressed herein do
not necessarily state or reflect those of Sandia Corporation, the United States Government or
any agency thereof.

Questions concerning this document or its application should be addressed to:

Regan Murray
USEPA/NHSRC (NG 16)
26 W Martin Luther King Drive
Cincinnnati OH 45268
(513) 569-7031
Murray.Regan@epa.gov

Sandia is a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States Depart-
ment of Energy's National Nuclear Security Administration under
Contract DE-AC04-94-AL85000.
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Forward

Since its inception in 1970, EPA's mission has been to pursue a cleaner, healthier environment for the
American people. The Agency was assigned the daunting task of repairing the damage already done to
the natural environment and establishing new criteria to guide Americans in making a cleaner environment
a reality. Since 1970, the EPA has worked with federal, state, tribal, and local partners to advance its
mission to protect human health and the environment. In order to carry out its mission, EPA employs and
collaborates with some of the nation's best scienti�c minds. EPA prides itself in applying sound science and
state of the art techniques and methods to develop and test innovations that will protect both human health
and the environment.

Under existing laws and recent Homeland Security Presidential Directives, EPA has been called upon to play
a vital role in helping to secure the nation against foreign and domestic enemies. The National Homeland
Security Research Center (NHSRC) was formed in 2002 to conduct research in support of EPA's role in
homeland security. NHSRC research e�orts focus on �ve areas: water infrastructure protection, threat and
consequence assessment, decontamination and consequence management, response capability enhancement,
and homeland security technology testing and evaluation. EPA is the lead federal agency for drinking water
and wastewater systems and the NHSRC is working to reduce system vulnerabilities, prevent and prepare for
terrorist attacks, minimize public health impacts and infrastructure damage, and enhance recovery e�orts.

This Users Manual for the TEVA-SPOT Toolkit software package is published and made available by EPA's
O�ce of Research and Development to assist the user community and to link researchers with their clients.

Jonathan Herrmann, Director

National Homeland Security Research Center
O�ce of Research and Development
U. S. Environmental Protection Agency
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License Notice

TEVA-SPOT Toolkit is Copyright 2008 Sandia Corporation. Under the terms of Contract DE-AC04-
94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software.

The �library� refers to the TEVA-SPOT Toolkit software, both the executable and associated source code.
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

A copy of the GNU Lesser General Public License is included in the library and contained in Appendix L of
this User's Manual; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA.

The TEVA-SPOT Toolkit utilizes a variety of external executables that are distributed under separate
open-source licenses:

• PICO - BSD and Common Public License

• randomsample, sideconstraints - ATT Software for noncommercial use.

• u� - Common Public License
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1 Introduction

Public water distribution systems are inherently vulnerable to accidental or intentional contamination be-
cause of their distributed geography. Further, there are many challenges to detecting contaminants in
drinking water systems: municipal distribution systems are large, consisting of hundreds or thousands of
miles of pipe; �ow patterns are driven by time-varying demands placed on the system by customers; and dis-
tribution systems are looped, resulting in mixing and dilution of contaminants. The use of on-line, real-time
contaminant warning systems (CWSs) is a promising strategy for mitigating these risks. Online sensor data
can be combined with public health surveillance systems, physical security monitoring, customer complaint
surveillance, and routine sampling programs to e�ect a rapid response to contamination incidents [20].

A variety of technical challenges need to be addressed to make CWSs a practical, reliable element of water se-
curity systems. A key aspect of CWS design is the strategic placement of sensors throughout the distribution
network. Given a limited number of sensors, a desirable sensor placement minimizes the potential economic
and public health impacts of a contaminant incident. There are a wide range of important design objectives
for sensor placements (e.g., minimizing the cost of sensor installation and maintenance, the response time to
a contamination incident, and the extent of contamination). In addition, �exible sensor placement tools are
needed to analyze CWS designs in large scale networks.

1.1 What is TEVA-SPOT?

The Threat Ensemble Vulnerability Assessment and Sensor Placement Optimization Tool (TEVA-SPOT)
has been developed by the U. S. Environmental Protection Agency, Sandia National Laboratories, Argonne
National Laboratory, and the University of Cincinnati. TEVA-SPOT has been used to develop sensor network
designs for several large water utilities [11], including the pilot study for the EPA's Water Security Initiative.

TEVA-SPOT allows a user to specify a wide range of modeling inputs and performance objectives for
contamination warning system design. Further, TEVA-SPOT supports a �exible decision framework for
sensor placement that involves two major steps: a modeling process and a decision-making process [12].
The modeling process includes (1) describing sensor characteristics, (2) de�ning the design basis threat, (3)
selecting impact measures for the CWS, (4) planning utility response to sensor detection, and (5) identifying
feasible sensor locations.

The design basis threat for a CWS is the ensemble of contamination incidents that a CWS should be
designed to protect against. In the simplest case, a design basis threat is a contamination scenario with
a single contaminant that is introduced at a speci�c time and place. Thus, a design basis threat consists
of a set of contamination incidents that can be simulated with standard water distribution models [17].
TEVA-SPOT provides a convenient interface for de�ning and computing the impacts of design basis threats.
In particular, TEVA-SPOT can simulate many contamination incidents in parallel, which has reduced the
computation of very large design basis threats from weeks to hours on the EPAs high performance computing
system.

TEVA-SPOT was designed to model a wide range of sensor placement problems. For example, TEVA-SPOT
supports a number of impact measures, including the number of people exposed to dangerous levels of a
contaminant, the volume of contaminated water used by customers, the number of feet of contaminated
pipe, and the time to detection. Response delays can also be speci�ed to account for the time a water utility
would need to verify a contamination incident before notifying the public. Finally, the user can specify the
feasible locations for sensors and �x sensor locations during optimization. This �exibility allows a user to
evaluate how di�erent factors impact the CWS performance and to iteratively re�ne a CWS design.
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1.2 About This Manual

The capabilities of TEVA-SPOT can be accessed either with a GUI or from command-line tools. This user
manual describes the TEVA-SPOT Toolkit, which contains these command-line tools. The TEVA-SPOT
Toolkit can be used within either a MS Windows DOS shell or any standard Unix shell (e.g. the Bash shell).

The following sections describe the TEVA-SPOT Toolkit, which we refer to as SPOT throughout this manual:

• TEVA-SPOT Toolkit Basics - An introduction to the process of sensor placement, the use of SPOT
command-line tools, and installation of the SPOT executables.

• Sensor Placement Formulations - The mathematical formulations used by the SPOT solvers.

• Contamination Incidents and Impact Measures - A description of how contamination incidents
are computed, and the impact measures that can be used in SPOT to analyze them.

• Sensor Placement Solvers - A description of how to apply the SPOT sensor placement solvers.

• File Formats - Descriptions of the formats of �les used by the SPOT solvers.

In addition, the appendices of this manual describe the syntax and usage of the SPOT command-line exe-
cutables.
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2 TEVA-SPOT Toolkit Basics

This section provides an introduction to the process of sensor placement, the use of SPOT command-line
tools, and the installation of the SPOT executables.

2.1 Approaches to Sensor Placement

Sensor placement strategies can be broadly characterized by the technical approach and the type of com-
putational model used. The following categories re�ect important di�erences in proposed sensor placement
strategies:

• Expert Opinion: Although expertise with water distribution systems is always needed to design an
e�ective CWS, here we refer to approaches that are solely guided by expert judgement. For example,
Berry et al. [4] and Trachman [19] consider sensor placements developed by experts with signi�cant
knowledge of water distribution systems. These experts did not use computational models to carefully
analyze network dynamics. Instead, they used their experience to identify locations whose water quality
is representative of water throughout the network.

• Ranking Methods: A related approach is to use preference information to rank network locations
[1, 8]. In this approach, a user provides preference values for the properties of a �desirable� sensor
location, such as proximity to critical facilities. These preferences can then be used to rank the
desirability of sensor locations throughout the network. Further, spatial information can be integrated
to ensure good coverage of the network.

• Optimization: Sensor placement can be automated with optimization methods that computationally
search for a sensor con�guration that minimizes contamination risks. Optimization methods use a
computational model to estimate the performance of a sensor con�guration. For example, a model
might compute the expected impact of an ensemble of contamination incidents, given sensors placed
at strategic locations.

Optimization methods can be further distinguished by the type of computational model that they use.
Early sensor placement research focused on models that used simpli�ed network models derived from
contaminant transport simulations. For example, hydraulic simulations can be used to model stable
network �ows [3], or to generate an averaged water network �ow model [14].

More recently, researchers have used models that directly rely on contaminant transport simulation
results. Simulation tools, like EPANET [17], perform extended-period simulation of the hydraulic and
water quality behavior within pressurized pipe networks. These models can evaluate the expected �ow
in water distribution systems, and they can model the transport of contaminants and related chemical
interactions. Thus, the CWS design process can directly minimize contamination risks by considering
simulations of an ensemble of contamination incidents, which re�ect the impact of contamination at
di�erent locations, times of the day, etc.

SPOT development has focused on optimization methods, and in particular on methods that use contaminant
transport simulation. Contaminant transport simulation models can directly model contamination risks, and
consequently optimization methods using these models have proven e�ective at minimizing risk. Comparisons
with expert opinion and ranking methods suggest that these approaches are not as e�ective in large, complex
networks [4, 15]. Further, optimization methods using simpler models can fail to capture important transient
dynamics (see Berry et al. [6] for a comparison).

A key issue for the simulation-based optimization methods is that they require the simulation of a potentially
large number of contamination incidents. Consequently, it is very expensive to apply generic optimization
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methods like evolutionary algorithms [14]. However, Berry et al. [5] have shown that these simulations can
be performed in an o�-line preprocessing step that is done in advance of the optimization process. Thus, the
time needed for simulation does not necessarily impact the time spent performing sensor placement.

2.2 The Main Steps in Using SPOT

The following example illustrates the main steps required to (1) simulate contamination incidents, (2) com-
pute contamination impacts, (3) perform sensor placement, and (4) evaluate a sensor placement. This
example places sensors in EPANET Example 3 (Net3), a small distribution system with 97 junctions.

The data used in this example is available in the C:\spot\examples\simple directory. In general, a user will
need to use a variety of data sources to develop a sensor placement model. The �le C:\spot\doc\SPOT_-
DataRequirements.doc discussess the type of data used in TEVA-SPOT in greater detail.

2.2.1 Simulating Contamination Incidents

Simulation of contamination incidents is performed with the tevasim command, which iteratively calls
EPANET to simulation an ensemble of contamination incidents. The tevasim command has the following
inputs and outputs:

• Inputs:

� TSG File: de�nes an ensemble of contamination scenarios

� INP File: the EPANET input �le for the network

• Outputs:

� TSO File: a binary �le that stores the contamination results for all incidents

� SDX File: a binary index �le into the TSO �le

� OUT File: a plain text log �le

For example, the �le C:\spot\examples\simple\Net3.tsg de�nes an ensemble of contamination scenarios for
Net3. Contamination incidents are simulated for all network junctions, one for each hour of the day, and
each contamination incident models an inject that continues for 24 hours. The tevasim command performs
these contaminant transport simulations, using the following command line:

tevasim --tsg Net3.tsg --tso Net3.tso Net3.inp Net3.out

2.2.2 Computing Contamination Impacts

A TSO �le contains raw data about the extent of a contamination throughout a network. This data needs
to be post-processed to compute relevant impact statistics. The tso2Impact command processes a TSO �le
and generates one or more IMPACT �les. An IMPACT �le is a plain text �le that summarizes the consequence
of each contamination incident in a manner that facilitates optimization. The tso2Impact command has
the following inputs and outputs:

• Inputs:

� TSO File: a binary �le of contamination result data generated by tevasim

� SDX File: a binary index �le generated by tevasim
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� INP File: the EPANET input �le for the network, which is used to compute impact measures like
the extent of contamination

• Outputs:

� IMPACT File(s): plain text �les that summarize the observed impact at each location where a
contamination incident could be observed by a potential sensor.

� NODEMAP File(s): plain text �les that map sensor placement ids to the network junction labels
(de�ned by EPANET).

The tso2Impact command generates IMPACT �les with the following command line:

tso2Impact --mc --vc --td --nfd --ec Net3 Net3.tso

This command generates IMPACT �les for each of the �ve objectives speci�ed: mass consumed (mc), volume
consumed (vc), time to detection (td), number of failed detections (nfd) and extent of contamination (ec).
For each impact �le (e.g. Net3_mc.impact ), a corresponding id �le is generated (e.g. Net3_mc.impact.id
).

2.2.3 Performing Sensor Placement

An IMPACT �le can be used to de�ne a sensor placement optimization problem. The standard problem
supported by SPOT is to minimize the expected impact over an ensemble of incidents while limiting the
number of potential sensors. By default, sensors can be placed at any junction in the network. The sp

command coordinates the application of optimization solvers for sensor placement. The sp command has a
rich interface, but the simplest use of it requires the following inputs and outputs:

• Inputs:

� IMPACT File(s): plain text �les that summarize the observed impact at each location

� NODEMAP File(s): plain text �les that map sensor placement ids to the network junction labels

• Outputs:

� SENSORS File: a plain text �le that summarizes the sensor locations identi�ed by the optimizer

For example, the command

sp --print-log --network="Net3" --objective=mc --solver=snl_grasp \

--ub=ns,5 --seed=1234567

generates the �le Net3.sensors, and prints a summary of the impacts for this sensor placement.

2.2.4 Evaluating a Sensor Placement

The �nal output provided by the sp command is actually generated by the evalsensor command, and this
command can be directly used to evaluate a sensor placement for a wide variety of di�erent objectives. The
evalsensor command requires the following inputs:

• Inputs:

�
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� IMPACT File(s): plain text �les that summarize the observed impact at each location

� NODEMAP File(s): plain text �les that map sensor placement ids to the network junction labels

� SENSORS File: a plain text �le that de�nes a sensor placement

For example, the command

evalsensor --nodemap=Net3.nodemap Net3.sensors Net3_ec.impact \

Net3_mc.impact Net3_nfd.impact

will summarize the solution in the Net3.sensors �le for the ec, mc and nfd impact measures. No �les are
generated by evalsensors.

2.3 Installation and Requirements for Using SPOT

Instructions for installing SPOT in Unix are included in the �rst appendix. Installation on MS Windows
platforms is considerably easier. An installer executable can be downloaded from

http://www.epa.gov/nhsrc/water/teva.html

When run, this installer places the SPOT software in the directory

C:\SPOT

Additionally, the installer places command wrappers in the system folder, so the system path does not need
to be edited to use the SPOT tools.

Some of the SPOT commands use the Python scripting language. Python is not commonly installed in MS
Windows machines, but an installer script can be downloaded from

http://www.python.org/download/

Unfortunately, the system path needs to be modi�ed to include the Python executable. A nice video
describing how to edit the system path is available at:

http://showmedo.com/videos/video?name=960000&fromSeriesID=96

No other utilities need to be installed to run the SPOT commands. EPANET is linked into the tevasim

executable. Detailed information about the SPOT commands is provided in the appendices. Note that all
SPOT commands need to be run from the DOS command shell. This can be launched from the "Acces-
sories/Command Prompt" menu. Numerous online tutorials can provide information about DOS commands.
For example, see

http://en.wikipedia.org/wiki/List_of_DOS_commands

http://www.computerhope.com/msdos.htm

Note that the plain text input �les used by SPOT can be edited using standard text editors. For example,
at a DOS prompt you can type

notepad Net3.tsg

to open up the Net3.tsg �le with the MS Windows Notepad application. The plain text output �les can be
viewed in a similar manner. The binary �les generated by SPOT cannot be viewed in this manner. Generally,
output �les should not be modi�ed manually since many are used as input to other programs.
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2.4 Reporting Bugs and Feature Requests

The TEVA-SPOT development team uses Trac tickets to communicate requests for features and bug �xes.
The TEVA-SPOT Trac site can can be accessed at:

https://software.sandia.gov/trac/spot

External users can insert a ticket, which will be moderated by the developers. Note that this is the only
mechanism for ensuring that bug �xes will be made a high priority by the development team.
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3 Sensor Placement Formulations

SPOT integrates solvers for sensor placement that have been developed by Sandia National Laboratories
and the Environmental Protection Agency, along with a variety of academic collaborators [3, 5, 7, 9, 12, 13].
SPOT includes (1) general-purpose heuristic solvers that consistently locate optimal solutions in minutes,
(2) integer- and linear-programming heuristics that �nd solutions of provable quality, (3) exact solvers that
�nd globally optimal solutions, and (4) bounding techniques that can evaluate solution optimality. These
solvers optimize a representation of the sensor placement problem that may be either an implicit or explicit.
However, in either case we can describe the mathematical formulation for this problem.

This section describes the mixed integer programming (MIP) formulations optimized by the SPOT solvers,
and this presentation assumes that the reader is familiar with MIP models. First, we describe the standard
SPOT formulation, eSP, which minimizes expected impact given a sensor budget. Subsequently, we describe
several other sensor placement formulations that SPOT solvers can optimize. This discussion is limited to
a description of the mathematical structure of these sensor placement problems. In many cases, SPOT has
more than one optimizer that can optimize these formulations, and we describe these optimizers later in this
manual. However, the goal of this section is to describe the mathematical structure of these formulations.

3.1 The Standard SPOT Formulation

The most widely studied sensor placement formulation for CWS design is to minimize the expected impact
of an ensemble of contamination incidents given a sensor budget. This formulation has also become the
standard formulation in SPOT, since it can be e�ectively used to select sensor placements in large water
distribution networks.

A MIP formulation for expected-impact sensor placement is:

(eSP) min
∑

a∈A αa

∑
i∈La

daixai

s.t.
∑

i∈La
xai = 1 ∀a ∈ A

xai ≤ si ∀a ∈ A, i ∈ La

xai ≤ 1− si ∀a ∈ A, i ∈ La \ {q}∑
i∈L cisi ≤ p

si ∈ {0, 1} ∀i ∈ L
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La

This MIP minimizes the expected impact of a set of contamination incidents de�ned by A. For each incident
a ∈ A, αa is the weight of incident a, frequently a probability. This formulation integrates contamination
simulation results, which are reported at a set of locations, denoted L, where a location refers to a network
junction. For each incident a, La ⊆ L is the set of locations that can be contaminated by a. Thus, a sensor
at a location i ∈ La can detect contamination from incident a at the time contamination �rst arrives at
location i. Each incident is witnessed by the �rst sensor to see it. For each incident a ∈ A and location
i ∈ La, dai de�nes the impact of the contamination incident a if it is witnessed by location i. This impact
measure assumes that as soon as a sensor witnesses contamination, then any further contamination impacts
are mitigated (perhaps after a suitable delay that accounts for the response time of the water utility). The
si variables indicate where sensors are placed in the network; the ci is the cost of placing a sensor at location
i, and p is the budget.

The xia variables indicate whether incident a is witnessed by a sensor at location i. We may not be able
to witness all contamination incidents with a given set of sensors. To account for this, L contains a dummy

location, q. This dummy location is in all subsets La. The impact for this location is handled in two di�erent
ways: (1) it is the impact of the contamination incident after the entire contaminant transport simulation
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has �nished, which corresponds to the impact that would occur without an online CWS, or (2) it has zero
impact. The �rst approach treats detection by this dummy location as a penalty. The second approach
simply ignores the detection by this dummy, though this does not really make sense without additional
side-constraints on the number of failed detections.

The eSP formulation is a slight generalization of the sensor placement model described by Berry et al. [5].
Berry et al. treat the impact of the dummy is treated as a penalty, in which case the third constraint is
redundant. The impact of a dummy detection is larger than all other impacts for each incident, so the
witness variable xai for the dummy will only be selected if no sensors have been placed that can detect this
incident.

Ignoring the constraint in this case, Berry et al. note that eSP is identical to the well-known p-median
facility location problem [10] when ci = 1. In the p-median problem, p facilities (e.g., central warehouses)
are to be located on m potential sites such that the sum of distances dai between each of n customers
(e.g., retail outlets) and the nearest facility i is minimized. In comparing eSP and p-median problems,
we observe equivalence between (1) sensors and facilities, (2) contamination incidents and customers, and
(3) contamination impacts and distances. While eSP allows placement of at most p sensors, p-median
formulations generally enforce placement of all p facilities; in practice, the distinction is irrelevant unless p
approaches the number of possible locations.

3.2 Robust SPOT Formulations

The eSP model can be viewed as optimizing one particular statistic of the distribution of impacts de�ned
by the contaminant transport simulations. However, other statistics may provide more "robust" solutions,
that are less sensitive to changes in this distribution [22]. Consider the following reformulation of eSP:

(rSP) min Impactf (α, d, x)
s.t.

∑
i∈La

xai = 1 ∀a ∈ A
xai ≤ si ∀a ∈ A, i ∈ La

xai ≤ 1− si ∀a ∈ A, i ∈ La \ {q}∑
i∈L cisi ≤ p

si ∈ {0, 1} ∀i ∈ L
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La

The function Impactf (α, d, x) computes a statistic of the impact distribution. The following functions are
supported in SPOT (see Watson, Hart and Murray [22] for further discussion of these statistics):

• Mean: This is the statistic used in eSP.

• VaR: Value-at-Risk (VaR) is a percentile-based metric. Given a con�dence level β ∈ (0, 1), the VaR is
the value of the distribution at the 1− β percentile [18]. The value of VaR is less than the TCE value.

Mathematically, suppose we have a random variable W that describes the distribution of possible
impacts. Then we have

VaR(W,β) = min{w | Pr[W ≤ w] ≥ β}.

Note that the distribution W changes with each sensor placement. Further, VaR can be computed
using the α, d and x values.

• TCE: The Tail-Conditioned Expectation (TCE) is a related metric which measures the conditional
expectation of impact exceeding VaR at a given con�dence level. Given a con�dence level 1−β, TCE is
the expectation of the worst impacts with probability β. This value is between VaR and the worst-case
value.
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Mathematically, we have

TCE(β) = E [W |W ≥ VaR(β)] .

The Conditional Value-at-Risk (CVaR) is a linearization of TCE investigated by Uryasev and Rock-
afellar [16]. CVaR approximates TCE with a continuous, piecewise-linear function of β, which enables
the use of CVaR in a MIP models for rSP.

• Worst: The worst impact value can be easily computed, since a �nite number of contamination
incidents are simulated. Further, rSP can be reworked to formulate a worst-case MIP formulation.
However, this statistic is sensitive to changes in the number of contamination incidents that are mod-
eled; adding additional contamination incidents may signi�cantly impact this statistic.

3.3 Min-Cost Formulations

A standard variant of eSP and rSP is to minimize cost while constraining the impact to be below a speci�ed
threshold, u . For example, the eSP MIP can be revised to formulate a MIP to minimize cost:

(ceSP) min
∑

i∈L cisi

s.t.
∑

i∈La
xai = 1 ∀a ∈ A

xai ≤ si ∀a ∈ A, i ∈ La

xai ≤ 1− si ∀a ∈ A, i ∈ La \ {q}∑
a∈A αa

∑
i∈La

daixai ≤ u
si ∈ {0, 1} ∀i ∈ L
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La

Minimal cost variants of rSP can also be easily formulated.

3.4 Formulations with Multiple Objectives

CWS design generally requires the evaluation and optimization of a variety of performance objectives. Some
performance objectives cannot be simultaneously optimized, and thus a CWS design must be selected from
a trade-o� between these objectives [21].

SPOT supports the analysis of these trade-o�s with the speci�cation of additional constraints on impact
measures. For example, a user can minimize the expected extent of contamination (ec) while constraining
the worst-case time to detection (td). SPOT allows for the speci�cation of more than one impact constraint.
However, the SPOT solvers cannot reliably optimize formulations with more than one impact constraint.

3.5 The SPOT Formulation with Imperfect Sensors

The previous sensor placement formulations make the implicit assumption that sensors work perfectly. That
is, they never fail to detect a contaminant when it exists, and they never generate an erroneous detection
when no contaminant exists. In practice, sensors are imperfect, and they generate these types of errors.

SPOT addresses this issue by supporting a formulation that models simple sensor failures [2]. Each sensor,
si, has an associated probability of failure, pi. With these probabilities, we can easily assess the probability
that a contamination incident will be detected by a particular sensor. Thus, it is straightforward to compute
the expected impact of a contamination incident.

This formulation does not explicitly allow for the speci�cation of probabilities of false detections. These
probabilities do not impact the performance of a CWS during a contamination incident. Instead, they
impact the day-to-day maintenance and use of the CWS; erroneous detections create work for the CWS
users, which is an ongoing cost. The overall likelihood of false detections is simply a function of the sensors
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that are selected. In cases where every sensor has the same likelihoods, this implies a simple constraint on
the number of sensors.
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4 Contamination Incidents and Impact Measures

This section describes how to simulate contamination incidents and compute contamination impacts, which
are the �rst steps needed to setup and solve a sensor placement problem with SPOT. These two steps can
be viewed as preprocessing or data preparation for sensor placement optimization. Thus, these steps can be
performed prior to optimization, which is generally a more interactive, iterative process.

The following sections illustrate the capabilities of SPOT with the example in the C:\spot\examples\simple
directory.

4.1 Simulating Contamination Incidents

To simulate contamination incidents, the tevasim (p. 53) command is utilized, which uses EPANET to
perform an ensemble of contaminant transport simulations de�ned by a TSG File (p. 32). An ensemble of
contamination scenarios for EPANET Example Net3 is de�ned in the �le C:\spot\examples\simple\Net3.tsg.
Contamination incidents are simulated for all network junctions, one for each hour of the day, and each
contamination incident models an injection that continues for 24 hours. The tevasim command is run with
the following command line:

tevasim --tsg Net3.tsg --tso Net3.tso Net3.inp Net3.out

This command generates three �les: (a) Net3.tso, a binary TSO �le that contains the contamination transport
data, (b) Net3.sdx, a binary SDX �le that provides an index into the TSO �le, and (c) Net3.out, which
provides a textual summary of the EPANET simulations and is the same as the report �le (∗.rpt) from
EPANET.

4.2 Using tso2Impact

After running tevasim (p. 53) command, the output �les, Net3.tso and Net3.sdx, can be used to compute
one or more IMPACT �les. An IMPACT �le summarizes the consequence of each contamination incident in
a manner that facilitates optimization. The tso2Impact (p. 54) command generates these �les with the
following command line:

tso2Impact --mc --vc --td --nfd --ec Net3 Net3.tso

This command generates IMPACT �les for each of the �ve objectives speci�ed: mass consumed (mc), volume
consumed (vc), time to detection (td), number of failed detections (nfd) and extent of contamination (ec).
For each IMPACT �le (e.g. Net3_mc.impact ), a corresponding ID �le is generated to map the sensor
placement ids back to the network junction labels (e.g. Net3_mc.impact.id ).

The impact measures computed by tso2Impact represent the amount of impact that would occur up until
the point where a contamination incident is detected. This computation assumes that sensors work perfectly
(i.e., there are no false positive or false negative errors). However, we can generalize the sensor behavior
in two ways. First, we can specify a detection threshold; contaminants are only detected above a speci�ed
concentration limit (the default limit is zero). Second, we can specify a response time, which accounts for the
time needed to verify that a contamination has occurred and then inform the public (the default response
time is zero). The contamination impact is computed at the time where the response has completed (the
detection time plus response time), which is called the e�ective response time. For undetected incidents, the
e�ective response time is simply the end of the contaminant transport simulation. The following illustrates
how to specify these options:
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tso2Impact --responseTime 60 --detectionLimit 0.1 --mc Net3 Net3.tso

This computes impacts for a 60 minute response time, with a 0.1 detection threshold. Note that the units
for �detectionLimit are the same as for the MASS values that are speci�ed in the TSG �le.

Impacts from multiple TSO �les can be combined to generate a single IMPACT �le using the following
syntax:

tso2Impact --detectionLimit 30000000 --detectionLimit 0.0001 --mc Net3 Net3_1a.tso Net3_1b.tso

Note that the value of 30000000 corresponds to the detection threshold for the contaminant described in
Net3_1a.tso and 0.0001 is the detection threshold for the contaminant described in Net3_1b.tso. For
example, this can be used to combine simulation results from di�erent types of contaminants, in which the
TSO �les would have been generated from di�erent TSG �les. Murray et al. [12] use this technique to
combine data from di�erent tyes of contamination incidents into a single impact metric.

4.3 Impact Measures

After running tevasim (p. 53) command, the output �les, Net3.tso and Net3.sdx, can be used to compute
one or more IMPACT �les. An IMPACT �le summarizes the consequence of each contamination incident in a
manner that facilitates optimization. A variety of objective measures are supported by tso2Impact to re�ect
the di�erent criteria that decision makers could use in CWS design. For most of these criteria, there is a
detected and undetected version of the objective. This di�erence concerns how undetected contamination
incidents are modeled.

For example, the default time-to-detection objective, td, uses the time at which the EPANET simulations
are terminated to de�ne the time for incidents that are not detected. By contrast, the detected time-to-
detection, dtd, simply ignores these incidents (they have impact zero). Sensor placement with the detected
objective is somewhat more precise, but this objective needs to be optimized with a revised formulation that
explicitly limits the fraction of incidents that are not detected by the sensors.

The following objectives are currently supported by tso2Impact:

• ec and dec - The extent of contaminated in the network. This is the total feet of pipes contaminated
by the e�ective response time. An entire pipe is considered contaminated if contaminant enters the
pipe at a given time step. For ec, the extent of contamination of an undetected incident is the extent of
contamination at the point when the simulation terminates, while undetected contamination incidents
are ignored for dec.

• mc and dmc - The mass of contaminant consumed by junctions in the network with nonzero demand.
For mc, the mass of contaminant of an undetected incident is the mass of contaminant that has left
the network via demand at the point when the simulation terminates, while undetected contamination
incidents are ignored for dmc. This objective is typically measured in milligrams (the units used in
the TSG �le are mg/L). However, concentrations may also be interpreted; for example, we can treat
this measure as a count of cells for a biological contaminant, where the TSG measurement is cells/L.

• nfd - The number of contamination incidents that are not detected by any sensor before the con-
taminant transport simulations terminate. NOTE: this measure is not a�ected by the response time
option.

• pe and dpe - The number of individuals exposed to a contaminant. For pe, the population exposed for
an undetected incident is the population exposed at the point when the simulation terminates, while
undetected contamination incidents are ignored fo dpe.
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• pd and dpd - The number of individuals that receive a dose of contaminant above a speci�ed threshold.
For pd, the population dosed by an undetected incident is the population dosed at the point when the
simulation terminates, while for dpd the undetected contamination incidents are ignored.

• pk and dpk - The number of individuals killed by a contaminant. For pk, the population killed by
an undetected incident is the population killed at the point when the simulation terminates, while for
dpk the undetected contamination incidents are ignored.

• td and dtd - The time, in minutes, from the beginning of a contamination incident until the �rst
sensor detects it. For td, the time-to-detection of an undetected incident is the time from the start of
the incident until the end of the simulation, while undetected contamination incidents are ignored for
dtd. NOTE: this measure is not a�ected by the response time option.

• vc and dvc - The volume of contaminated water consumed by junctions in the network with nonzero
demand. For vc, the volume of contaminated water of an undetected incident is the volume of contam-
inated water consumed at the point when the simulation terminates, while undetected contamination
incidents are ignored for dvc.

These health impact measures are computed with an auxiliary input �le, TAI, that speci�es parameters for
a health impact model that predicts how a population is a�ected by exposure to a contaminant. The TAI
File (p. 32) bio.tai speci�es the nature of the contaminant and how it impacts human health. Further, this
�le speci�es the fraction of the volume of water consumed at junctions that is consumed by humans. For
example, consider the command line:

tso2Impact --pe Net3 Net3.tso bio.tai

4.4 Advanced Tools for Large Sensor Placements Problems

In some applications, the size of the IMPACT �les is very large, which can lead to optimization models that
cannot be solved on standard 32-bit workstations. SPOT includes several utilities that are not commonly used
to address this challenge: the scenarioAggr (p. 45) executable aggregates similar contamination incidents,
and the �lter_impacts (p. 42) script �lters out contamination incidents that have low impacts.

The scenarioAggr (p. 45) executable reads an IMPACT �le, �nds similar incidents, combines them, and
writes out another IMPACT �le. This aggregation technique combines two incidents that impact the same
locations in the same order, allowing for the possibility that one incident continues to impact other locations.
For example, two contamination incidents should travel in the same pattern if they di�er only in the nature of
the contaminant, though one may decay more quickly than the other. Aggregated incidents can be combined
by simply averaging the impacts that they observe and updating the corresponding incident weight.

For example, consider the command:

scenarioAggr --numEvents=236 Net3_mc.impact

This creates the �les aggrNet3_mc.impact and aggrNet3_mc.impact.prob; where the Net3_mc.impact

�le has 236 events. The �le aggrNet3_mc.impact is the new IMPACT �le, and the �le aggrNet3_-

mc.impact.prob contains the probabilities of the aggregated incidents.

The �lter_impacts (p. 42) script reads an impact �le, �lters out the low-impact incidents, rescales the
impact values, and writes out another IMPACT �le. The command:

filter_impacts --percent=5 Net3_mc.impact filtered.impact
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generates an IMPACT �le that contains the incidents whose impacts (without sensors) are the largest 5%
of the incidents in Net3_mc.impact. Similarly, the �num=k option selects the k incidents with the largest
impacts, and the option �threshold=h selects the incidents with the impacts greater than or equal to h.

The filter_impacts command also includes options to rescale the impact values. The �rescale option
rescales impact values with a log-scale and the �round option rescales impact values to rounded log-scale
values.
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5 Sensor Placement Solvers

The SPOT sensor placement solvers are launched with the sp (p. 48) command. The sp command reads in
one or more IMPACT �les, and computes a sensor placement. Command-line options for sp can specify any
of a set of performance or cost goals as the objective to be optimized, as well as constraints on performance
and cost goals.

The sp command currently interfaces with three di�erent sensor placement optimizers:

• MIP solvers - Several di�erent MIP solvers can be used by the sp command: the commercial CPLEX
solver and the open-source PICO solver. These optimizers use the MIP formulations to �nd globally
optimal solutions. However, this may be a computationally expensive process (especially for large
problems), and the size of the MIP formulation can become prohibitively large in some cases.

Two di�erent MIP solvers can be used: the public-domain PICO solver and the commercial PICO
solver. PICO is included in distributions of SPOT.

• GRASP Heuristic - The GRASP heuristic performs sensor placement optimization without explicitly
creating a MIP formulation. Thus, this solver uses much less memory, and it usually runs very quickly.
Although the GRASP heuristic does not guarantee that a globally optimal solution is found, it has
proven e�ective at �nding optimal solutions to a variety of large-scale applications.

Two di�erent implementations of the GRASP solvers can be used: an ATT commercial solver (att_-
grasp) and an open-source implementation of this solver (snl_grasp).

• GRASP Heuristic - The GRASP heuristic performs sensor

• Lagrangian Heuristic - The Lagrangian heuristic uses the structure of the p-median MIP formulation
(eSP) to �nd near-optimal solutions while computing a lower bound on the best possible solution.

The following sections provide examples that illustrate the use of the sp command. A complete description
of sp is available in the Appendix. Note that this appendix includes a summary of the limitations of di�erent
solvers.

The sp command has many di�erent options. The following examples show how di�erent sensor place-
ment optimization problems can be solved with sp. Note that these examples can be run in the
C:\spot\examples\simple directory. The user needs to generate IMPACT �les for these examples with
the following commands:

tevasim --tsg Net3.tsg --tso Net3.tso Net3.inp Net3.out

tso2Impact --mc --vc --td --nfd --ec Net3 Net3.tso

5.1 A Simple Example

The following simple example illustrates the way that SPOT has been most commonly used. In this example,
SPOT minimizes the extent of contamination (ec) while limiting the number of sensors (ns) to no more than
5. This problem formulation (eSP) can be e�ciently solved with all solvers for modest-size distribution
networks, and heuristics can e�ectively perform sensor placement on very large networks.

We begin by using the PICO solver to solve this problem, with the following command line:

sp --network=Net3 --objective=ec --ub=ns,5 --solver=pico
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This speci�es that network Net3 is analyzed. The objective is to minimize ec, the extent of contamination,
and an upper-bound of 5 is placed on ns, the number of sensors. The solver selected is pico, the PICO MIP
solver.

This execution of the sp command uses the Net3_ec.impact �le and creates the following �les: Net3.log,
a log�le for the optimization solver, and Net3.sensors, a �le with the sensor placement locations. Also, sp
generates the following output:

read_impact_files: C:\spot\examples\simple\Net3_ec.impact

Number of Nodes : 97

Number of Contamination Impacts: 9458

Running PICO...

PICO --debug=1 --lpType=clp --tableInitFrac=0.05 --RRTrialsPerCall=8

--RRDepthThreshold=-1 --usingCuts=true Net3.mod

C:\spot\examples\simple\Net3.dat

... PICO done

------------------------------------------------------------------------------

Sensor placement id: 22971

Number of sensors: 5

Total cost: 0

Sensor node IDs: 19 28 54 63 75

Sensor junctions: 119 141 193 207 239

Impact File: Net3_ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 8478.9674

Lower quartile impact: 0.0000

Median impact: 6949.0000

Upper quartile impact: 12530.0000

Value at Risk (VaR) ( 5%): 25960.0000

TCE ( 5%): 33323.2833

Max impact: 42994.8000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

54 29124.8004

19 18687.7292

63 11471.6750

75 9951.8699

28 8478.9674

Done with sp

The initial information up to the statment "... PICO done" is simply output about what solver is run and
information from the solver output. The next information beginning with "Sensor placement id:" is generated
by evalsensor (p. 40). This is a summary that describes the sensor placement and the performance of this
sensor placement with respect to the impact measure that was minimized. This includes the following data:

• Sensor placement id - an integer ID used to distinguish this sensor placement

• Number of sensors - the number of sensors in the sensor placement

• Total cost: - the cost of the sensor placement, which may be nonzero if cost data is provided

• Sensor node IDs - the internal node indexes used by sp

• Sensor junctions - the EPANET junction labels for the sensor locations

The performance of the sensor placement is summarized for each IMPACT �le used with sp. The impact
statistics included are:
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• min - The minimum impact over all contamination events. If we make the assumption that a sensor
protects the node at which it is placed, then this measure will generally be zero.

• mean - The mean (or average) impact over all contamination events.

• lower quartile - 25% of contamination events, weighted by their likelihood, have an impact value less
than this quartile.

• median - 50% of contamination events, weighted by their likelihood, have an impact value less than
this quartile.

• upper quartile - 75% of contamination events, weighted by their likelihood, have an impact value
less than this quartile.

• VaR - The value at risk (VaR) uses a user-de�ned percentile. Given 0.0 < β < 1.0, VaR is the
minimum value for which 100 ∗ (1− β)% of contamination events have a smaller impact.

• TCE - The tailed-conditioned expectation (TCE) is the mean value of the impacts that are greater
than or equal to VaR.

• worst - The value of the worst impact.

Finally, a greedy sensor placement is described by evalsensor, which takes the �ve sensor placements and
places them one-at-a-time, minimizing the mean impact as each sensor is placed. This gives a sense of the
relative priorities for these sensors.

The evalsensor command can evaluate a sensor placement for a wide variety of di�erent objectives. For
example, the command

evalsensor --nodemap=Net3.nodemap Net3.sensors Net3_ec.impact \

Net3_mc.impact Net3_nfd.impact

will summarize the solution in the Net3.sensors �le for the ec, mc and nfd impact measures.

The following example shows how to solve this same problem with the GRASP heuristic. This solver �nds
the same (optimal) solution as the MIP solver, though much more quickly.

sp --network=Net3 --objective=ec --ub=ns,5 --solver=snl_grasp

read_impact_files: C:\spot\examples\simple\Net3_ec.impact

Note: witness aggregation disabled for grasp

Number of Nodes : 97

Number of Contamination Impacts: 9458

Number of sensors=5

Objective=ec

Statistic=mean

Impact file=C:\spot\examples\simple\Net3_ec.impact

Delay=0

Running iterated descent heuristic for *perfect* sensor model

Iterated descent completed

------------------------------------------------------------------------------

Sensor placement id: 23009

Number of sensors: 5

Total cost: 0

Sensor node IDs: 19 28 54 63 75

Sensor junctions: 119 141 193 207 239

Impact File: Net3_ec.impact
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Number of events: 236

Min impact: 0.0000

Mean impact: 8478.9674

Lower quartile impact: 0.0000

Median impact: 6949.0000

Upper quartile impact: 12530.0000

Value at Risk (VaR) ( 5%): 25960.0000

TCE ( 5%): 33323.2833

Max impact: 42994.8000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

54 29124.8004

19 18687.7292

63 11471.6750

75 9951.8699

28 8478.9674

Done with sp

Finally, the following example shows how to solve this problem with the Lagrangian heuristic. This solver
does not �nd as good a solution as the GRASP heuristic.

sp --network=Net3 --objective=ec --ub=ns,5 --solver=lagrangian

read_impact_files: C:\spot\examples\simple\Net3_ec.impact

Number of Nodes : 97

Number of Contamination Impacts: 9458

aggregateImpacts Net3.config 10000

Setting up Lagrangian data files...

Running UFL solver ...

ufl Net3_ec_agg.lag 6 0

------------------------------------------------------------------------------

Sensor placement id: 27730

Number of sensors: 5

Total cost: 0

Sensor node IDs: 15 17 19 21 66

Sensor junctions: 111 115 119 121 211

Impact File: C:\spot\examples\simple\Net3_ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 12306.8229

Lower quartile impact: 0.0000

Median impact: 10410.0000

Upper quartile impact: 18100.0000

Value at Risk (VaR) ( 5%): 41526.9000

TCE ( 5%): 45057.9000

Max impact: 49880.8000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

19 32174.3110

66 17854.3458

15 13583.0559

21 12929.5602

17 12306.8229

Done with sp
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5.2 Computing a Bound on the Best Sensor Placement Value

The following example shows how a lower bound can be computed on the best possible sensor placement.
That is, any sensor placement would have an expected impact greater than this value. A bound is computed
with the following syntax:

sp --network=Net3 --objective=ec --ub=ns,5 --solver=pico --compute-bound

read_impact_files: C:\spot\examples\simple\Net3_ec.impact

Number of Nodes : 97

Number of Contamination Impacts: 9458

Running PICO...

PICO --debug=1 --lpType=clp --onlyRootLP=true Net3.mod

C:\spot\examples\simple\Net3.dat

... PICO done

Computing a lower bound

Objective lower bound: 8478.96737288

Done with sp

5.3 Minimizing the Number of Sensors

We can "invert" the sensor placement problem by minimizing the number of sensors subject to a constraint
on the extent of contamination. Note that the following example �nds a solution with a single sensor that
meets our goal of 40000 mean extent of contamination.

sp --network=Net3 --objective=ns --ub=ec,40000 --solver=pico

read_impact_files: C:\spot\examples\simple\Net3_ec.impact

Number of Nodes : 97

Number of Contamination Impacts: 9458

WARNING: Location aggregation does not work with side constraints

WARNING: Turning off location aggregation

Running PICO...

PICO --debug=1 --lpType=clp --RRTrialsPerCall=8 --RRDepthThreshold=-1 --usingCuts=true --absTolerance=.99999 Net3.mod C:\spot\examples\simple\Net3.dat

... PICO done

------------------------------------------------------------------------------

Sensor placement id: 27738

Number of sensors: 1

Total cost: 0

Sensor node IDs: 37

Sensor junctions: 161

Impact File: C:\spot\examples\simple\Net3_ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 26901.9572

Lower quartile impact: 3940.0000

Median impact: 22450.0000

Upper quartile impact: 38855.0000

Value at Risk (VaR) ( 5%): 71377.8000

TCE ( 5%): 81046.0667

Max impact: 103746.0000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

37 26901.9572

Done with sp
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5.4 Fixing Sensor Placement Locations

Properties of the sensor locations can be speci�ed with the �sensor-locations option. This options speci�es
a Placement Locations File (p. 36) that can control whether sensor locations are feasible or infeasible,
and �xed or un�xed. For example, suppose the �le locations contains

infeasible 193 119 141 207 239

fixed 161

The following example shows how these restrictions impact the solution. Compared to the �rst example
above, we have a less-optimal solution, since we cannot use the sensor locations above and we are required
to include junction 161.

sp --network=Net3 --objective=ec --ub=ns,5 --solver=pico

--sensor-locations=locations

read_impact_files: C:\spot\examples\simple\Net3_ec.impact

Number of Nodes : 97

Number of Contamination Impacts: 9458

Running PICO...

PICO --debug=1 --lpType=clp --tableInitFrac=0.05 --RRTrialsPerCall=8

--RRDepthThreshold=-1 --usingCuts=true Net3.mod

C:\spot\examples\simple\Net3.dat

... PICO done

------------------------------------------------------------------------------

Sensor placement id: 22996

Number of sensors: 5

Total cost: 0

Sensor node IDs: 17 33 37 50 66

Sensor junctions: 115 151 161 185 211

Impact File: Net3_ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 9338.7119

Lower quartile impact: 0.0000

Median impact: 7640.0000

Upper quartile impact: 14120.0000

Value at Risk (VaR) ( 5%): 27335.0000

TCE ( 5%): 32282.3000

Max impact: 45300.0000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

37 26901.9572

66 18192.6581

33 13958.3119

17 11281.2907

50 9338.7119

Done with sp

5.5 Robust Optimization of Sensor Locations

The following example demonstrates the optimization of sensor placements using the TCE measure. TCE is
the mean value of the worst incidents in the ensemble being evaluated. Given a con�dence level 1− β, TCE
is the expectation of the worst impacts with probability β. Compared with our �rst example, we see that
this �nds a better solution in terms of TCE, although the mean performance is slightly worse.
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sp --network=Net3 --objective=ec_tce --ub=ns,5 --solver=snl_grasp

read_impact_files: C:\spot\examples\simple\Net3_ec.impact

Note: witness aggregation disabled for grasp

Number of Nodes : 97

Number of Contamination Impacts: 9458

Number of sensors=5

Objective=ec

Statistic=tce

Impact file=C:\spot\examples\simple\Net3_ec.impact

Delay=0

Running iterated descent heuristic for *perfect* sensor model

Iterated descent completed

------------------------------------------------------------------------------

Sensor placement id: 23005

Number of sensors: 5

Total cost: 0

Sensor node IDs: 17 19 24 65 88

Sensor junctions: 115 119 127 209 267

Impact File: Net3_ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 10266.1110

Lower quartile impact: 0.0000

Median impact: 10400.0000

Upper quartile impact: 16930.0000

Value at Risk (VaR) ( 5%): 24199.0000

TCE ( 5%): 26376.2167

Max impact: 28564.8000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

88 30803.8140

19 19369.7636

65 12568.0822

17 11130.4161

24 10266.1110

Done with sp

Note that the greedy ordering of sensors is less useful in this case. Although we optimized to minimize TCE,
the greedy ordering uses the mean value to select each sensor location.

5.6 Multi-Criteria Analysis

We now illustrate how sp supports multi-objective analysis through an iterative process. SPOT does not
have a general "pareto search" optimizer. Instead, users can specify constraints with sp that ensure that
previously optimized objectives are "close" to their previous values. In this way, the user can explicitly
search for trade-o�s between one-or-more performance objectives.

The examples above consider the extent-of-contamination objective. We can assess how well the sensor
placements generated above minimize other objectives like the expected mass of contaminant consumed
using evalsensor. Consider the solution generated by the previous example (which minimized ec_tce),
which we have copied into the �le Net3_ec.sensors.

evalsensor --nodemap=Net3.nodemap Net3_ec.sensors Net3_mc.impact

------------------------------------------------------------------------------

Sensor placement id: 23112

Number of sensors: 5

Total cost: 0
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Sensor node IDs: 17 19 24 65 88

Sensor junctions: 115 119 127 209 267

Impact File: Net3_mc.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 70895.2854

Lower quartile impact: 503.9170

Median impact: 83150.7000

Upper quartile impact: 144002.0000

Value at Risk (VaR) ( 5%): 144271.0000

TCE ( 5%): 144546.8333

Max impact: 144693.0000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

65 71599.4274

88 71256.6780

24 71042.6323

17 70952.7213

19 70895.2854

The mean mass consumed is 70895, which is far from the optimal value of 21782 (which we computed
separately). We revisit the robust optimization example in the previous section; we keep "extent of contam-
ination - tce" as our primary objective, but we now impose a "side constraint" that precludes any solution
that admits an average mass consumed of worse than 30,000 units. We do this as follows:

sp --network=Net3 --objective=ec_tce --ub=mc_mean,30000 --ub=ns,5 --solver=snl_grasp

read_impact_files: C:\spot\examples\simple\Net3_ec.impact

read_impact_files: C:\spot\examples\simple\Net3_mc.impact

Note: witness aggregation disabled for grasp

Number of Nodes : 97

Number of Contamination Impacts: 9458

WARNING: Location aggregation does not work with side constraints

WARNING: Turning off location aggregation

Number of sensors=5

Objective=ec

Statistic=tce

Impact file=C:\spot\examples\simple\Net3_ec.impact

Delay=0

Running iterated descent heuristic for *perfect* sensor model

Iterated descent completed

------------------------------------------------------------------------------

Sensor placement id: 23143

Number of sensors: 5

Total cost: 0

Sensor node IDs: 4 15 29 68 81

Sensor junctions: 35 111 143 215 253

Impact File: Net3_ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 14315.5322

Lower quartile impact: 1379.0000

Median impact: 10810.0000

Upper quartile impact: 21809.8000

Value at Risk (VaR) ( 5%): 37915.8000

TCE ( 5%): 48340.3667

Max impact: 71329.0000

Impact File: Net3_mc.impact

Number of events: 236
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Min impact: 0.0000

Mean impact: 29501.3226

Lower quartile impact: 139.0200

Median impact: 1766.1000

Upper quartile impact: 16476.3000

Value at Risk (VaR) ( 5%): 144271.0000

TCE ( 5%): 144276.3333

Max impact: 144335.0000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

4 33437.5797

15 22324.5746

29 17100.4814

68 14912.0110

81 14315.5322

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

81 55207.4343

29 37684.3130

4 32849.0896

68 29738.0747

15 29501.3226

Done with sp

Note that the primary objective, minimizing the TCE of the "extent of contamination" measure, has gotten
worse: it is now 48340 rather than 26376. However, our side constraint has been honored, and the mean
mass consumed value is now 29501 rather than 70895.

5.7 Sensor Placements without Penalties

A fundamental issue for sensor placement is how to handle the fact that a limited budget of sensors will not be
able to cover all possible incidents. SPOT addresses this issue by providing impact measures that integrate
an impact 'penalty' for incidents that are not detected by a CWS design. Thus, in the previous examples
there was an implicit trade-o� between impact reduction and reduction in the number of contamination
incidents that are detected.

SPOT also includes impact measures that do not contain these penalties, which allows a user to more
directly assess the performance of a CWS design in the context where detections have occured. For example,
the time-to-detection measure (td) includes a penalty for undetected incidents, but the detected-time-to-
detection measure (dtd) has no penalty (or, more precisely, a zero penalty).

For example, consider the simple example above, which minimizes the extent of contamination. We apply
evalsensors to the �nal solution to evaluate the ec, dec and nfd impact measures:

evalsensor --nodemap=Net3.nodemap Net3_orig.sensors Net3_ec.impact

Net3_dec.impact Net3_nfd.impact

------------------------------------------------------------------------------

Sensor placement id: 3789

Number of sensors: 5

Total cost: 0

Sensor node IDs: 19 28 54 63 75

Sensor junctions: 119 141 193 207 239

Impact File: Net3_ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 8478.9674

Lower quartile impact: 0.0000
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Median impact: 6949.0000

Upper quartile impact: 12530.0000

Value at Risk (VaR) ( 5%): 25960.0000

TCE ( 5%): 33323.2833

Max impact: 42994.8000

Impact File: Net3_dec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 8184.5182

Lower quartile impact: 0.0000

Median impact: 6949.0000

Upper quartile impact: 12530.0000

Value at Risk (VaR) ( 5%): 25960.0000

TCE ( 5%): 33323.2833

Max impact: 42994.8000

Impact File: Net3_nfd.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 0.2500

Lower quartile impact: 0.0000

Median impact: 0.0000

Upper quartile impact: 0.0000

Value at Risk (VaR) ( 5%): 1.0000

TCE ( 5%): 1.0000

Max impact: 1.0000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors: Net3_ec.impact

------------------------------------------------------------------------------

54 29124.8004

19 18687.7292

63 11471.6750

75 9951.8699

28 8478.9674

------------------------------------------------------------------------------

Greedy ordering of sensors: Net3_dec.impact

------------------------------------------------------------------------------

19 4845.7771

28 3613.4678

54 10489.1614

63 7097.6114

75 8184.5182

------------------------------------------------------------------------------

Greedy ordering of sensors: Net3_nfd.impact

------------------------------------------------------------------------------

75 0.2712

28 0.2500

19 0.2500

54 0.2500

63 0.2500

In this example, the �nal sensor placement fails to detect 25% of the incidents. It is noteworthy that this
does not impact the mean performance very much, since the impact penalty has led to a �nal solution that
fails to detect few incidents with high penalties.

Note that minimizing dtd does not really make sense. With zero sensors, you detect no incidents, which
means that the �nal impact measurement is zero! Thus, minimizing dtd requires the additional constraint
on the number of failed detections (nfd) as well as a limit on the number of sensors (or total sensor costs).

Only the 'pico' SPOT solver currently supports optimization with 'detected' impact measures. For example:

sp --network=Net3 --objective=dec --ub=ns,5 --ub=nfd,0.25 --solver=pico
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Number of Nodes : 97

Number of Contamination Impacts: 9458

WARNING: Location aggregation does not work with side constraints

WARNING: Turning off location aggregation

Running PICO...

PICO --debug=1 --lpType=clp --RRTrialsPerCall=8

--RRDepthThreshold=-1 --feasibilityPump=false --usingCuts=true

Net3.mod C:\spot\examples\simple\Net3.dat

... PICO done

------------------------------------------------------------------------------

Sensor placement id: 23466

Number of sensors: 5

Total cost: 0

Sensor node IDs: 19 28 54 63 75

Sensor junctions: 119 141 193 207 239

Impact File: Net3_dec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 8184.5182

Lower quartile impact: 0.0000

Median impact: 6949.0000

Upper quartile impact: 12530.0000

Value at Risk (VaR) ( 5%): 25960.0000

TCE ( 5%): 33323.2833

Max impact: 42994.8000

Impact File: Net3_nfd.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 0.2500

Lower quartile impact: 0.0000

Median impact: 0.0000

Upper quartile impact: 0.0000

Value at Risk (VaR) ( 5%): 1.0000

TCE ( 5%): 1.0000

Max impact: 1.0000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors: Net3_dec.impact

------------------------------------------------------------------------------

19 4845.7771

28 3613.4678

54 10489.1614

63 7097.6114

75 8184.5182

------------------------------------------------------------------------------

Greedy ordering of sensors: Net3_nfd.impact

------------------------------------------------------------------------------

75 0.2712

28 0.2500

19 0.2500

54 0.2500

63 0.2500

Done with sp

5.8 Limited-Memory Sensor Placement Techniques

Controlling memory usage is a critical issue for solving large sensor placement formulations. This is a
particular challenge for MIP methods, but both the GRASP and Lagrangian heuristics can have di�cultly
solving very large problems on standard workstations. A variety of mechanisms have been integrated into sp
to reduce the problem representation size while preserving the structure of the sensor placement problem.

The scenarioAggr (p. 45) method described in the previous section is one possible strategy. This tool
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compresses the impact �le while preserving the fundamental structure of the impact �le and it is appropriate
when optimizing for mean performance objectives. Similarly, the �lter_impacts (p. 42) script can limit
the sensor placement to only consider contamination incidents that are "su�ciently bad" in the worst-case.
Another strategy is to limit the number of sensor placements, using the �sensor-locations option described
above, since eliminating feasible locations reduces the problem representation used by the sp solvers.

Two other strategies are also supported by sp. First, the GRASP heuristic has several options for controlling
how memory is managed. The �grasp-representation option can be used to control how the local search
steps are performed. By default, a dense matrix is precomputed to perform local search steps quickly, but
a sparse matrix can be used to perform local search with less memory. Also, the GRASP heuristic can be
con�gured to use the local disk to store this matrix. It should be noted that the Lagrangian heuristic requires
less memory than the GRASP heuristic, and thus similar techniques have not been developed for it.

Second, the witness aggregation technique can be used to limit the size of the sensor placement formulation.
This term refers to the variables in the MIP formulation that "witness" a contamination event. By default,
variables that witness contamination events with the same impact are aggregated, and this typically reduces
the MIP constraint matrix by a signi�cant amount. Further reductions can be performed with more aggressive
aggregations.

To illustrate the use of witness aggregation, we generated impact �les with the C:\spot\etc\tsg\hourly.tsg
TSG �le. The following table illustrates the use of the two witness aggregation options when optimiz-
ing the mean extent of contamination: �aggregation-percent and �aggregation-ratio (used with the
�distinguish-detection option, which helps this aggregation option). The second line of data in this table
is the default aggregation, which has about half as many non-zero values in the MIP constraint matrix. Both
the percent and ratio aggregation strategies e�ectively reduce the problem size while �nding near-optimal
solutions.

Aggr Type Aggr Value Binary Vars MIP Nonzeros Solution Value
None NA 97 220736 8525
Percent 0.0 97 119607 8525
Percent 0.125 97 49576 9513
Ratio 0.125 97 12437 10991

5.9 Evaluating a Sensor Placement

The evalsensor (p. 40) executable takes sensor placements in a Sensor Placement File (p. 33) and eval-
uates them using data from an Impact File (p. 33) (or a list of impact �les). This executable measures the
performance of each sensor placement with respect to the set of possible contamination locations. This anal-
ysis assumes that probabilities have been assigned to these contamination locations, and if no probabilities
are given then uniform probabilies are used by evalsensor.

The following example illustrates the use of evalsensor after running the �rst sensor placement optimization
example.

evalsensor --nodemap=Net3.nodemap Net3_orig.sensors Net3_ec.impact

Net3_mc.impact

------------------------------------------------------------------------------

Sensor placement id: 5511

Number of sensors: 5

Total cost: 0

Sensor node IDs: 19 28 54 63 75

Sensor junctions: 119 141 193 207 239

Impact File: Net3_ec.impact

Number of events: 236

Min impact: 0.0000
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Mean impact: 8478.9674

Lower quartile impact: 0.0000

Median impact: 6949.0000

Upper quartile impact: 12530.0000

Value at Risk (VaR) ( 5%): 25960.0000

TCE ( 5%): 33323.2833

Max impact: 42994.8000

Impact File: Net3_mc.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 43636.7076

Lower quartile impact: 220.0020

Median impact: 1909.9500

Upper quartile impact: 105031.0000

Value at Risk (VaR) ( 5%): 144271.0000

TCE ( 5%): 144345.0000

Max impact: 144477.0000

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

54 29124.8004

19 18687.7292

63 11471.6750

75 9951.8699

28 8478.9674

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

75 59403.2616

28 44478.4678

63 43854.6979

54 43659.7307

19 43636.7076

The evalsensors command can also evaluate a sensor placement in the case where sensors can fail, and
there is some small number of di�erent classes of sensors (grouped by false negative probability). Consider
the Net3.imperfectsc �le, which de�nes di�erent categories of sensor failures:

1 0.25

2 0.50

3 0.75

4 1.0

Sensors of class "1" give false negative readings 25% of the time, sensors of class "2" give them 50% of the
time, etc.

Once failure classes have been de�ned, the junctions of the network are assigned to classes. This is done
with another �le (a "junction class" or jc �le), like Net3.imperfectjc.

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1
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13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1

....

....

Given the junction classes, we can run evalsensor to determine the expected impact of a sensor placement,
given that sensors may fail. Again, using the solution from the original example:

evalsensor --nodemap=Net3.nodemap --sc-probabilities=Net3.imperfectsc

--scs=Net3.imperfectjc Net3_orig.sensors Net3_ec.impact

------------------------------------------------------------------------------

Sensor placement id: 5511

Number of sensors: 5

Total cost: 0

Sensor node IDs: 19 28 54 63 75

Sensor junctions: 119 141 193 207 239

Impact File: Net3_ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 17161.8656

Lower quartile impact: 3940.0000

Median impact: 15307.2500

Upper quartile impact: 26537.2156

Value at Risk (VaR) ( 5%): 47637.7773

TCE ( 5%): 54977.0644

Max impact: 75509.9043

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

54 36553.6321

63 25655.0376

28 21209.3084

75 18810.1629

19 17161.8656

Note that the mean impact of this "extent of contamination" changes dramatically if sensors are allowed to
fail. The original solution, 8478 pipe feet, was misleading if sensors fail according to the probabilities we
have assigned. With sensor failures, the expected impact is 17161 pipe feet � more than twice the "perfect
sensor" impact.

5.10 Sensor Placement with Imperfect Sensors

The GRASP heuristics in SPOT can optimize sensor placements that take into account sensor failures. For
example, we can perform sensor placement optimization with imperfect sensors using the Net3.imperfectsc
and Net3.imperfectjc �les de�ned in the previous section.

sp --network=Net3 --objective=ec --ub=ns,5 --imperfect-scfile=Net3.imperfectsc

--imperfect-jcfile=Net3.imperfectjc --solver=snl_grasp

read_impact_files: C:\spot\examples\simple\Net3_ec.impact

Note: witness aggregation disabled for grasp
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Number of Nodes : 97

Number of Contamination Impacts: 9458

Number of sensors=5

Objective=ec

Statistic=mean

Impact file=C:\spot\examples\simple\Net3_ec.impact

Delay=0

Running iterated descent heuristic for *imperfect* sensor model

Iterated descent completed

------------------------------------------------------------------------------

Sensor placement id: 9285

Number of sensors: 5

Total cost: 0

Sensor node IDs: 33 63 75 83 87

Sensor junctions: 151 207 239 257 265

Impact File: Net3_ec.impact

Number of events: 236

Min impact: 0.0000

Mean impact: 13414.2479

Lower quartile impact: 3610.0000

Median impact: 11690.0000

Upper quartile impact: 20096.0000

Value at Risk (VaR) ( 5%): 36467.5500

TCE ( 5%): 44420.1990

Max impact: 63324.0500

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Greedy ordering of sensors

------------------------------------------------------------------------------

87 27984.5508

63 22080.0939

83 16853.0790

75 14955.9915

33 13414.2479

Done with sp

After this optimization, the mean impact is 13414 pipe feet rather than the 17161 pipe feet value for the
solution optimized with perfect sensors. Thus, it is clear that the GRASP heuristic makes di�erent choices
if the sensors are imperfect.

5.11 Summary of Solver Features

The following table highlights the capabilities of the SPOT optimizers. The previous examples illustrate
SPOT's capabilities, but the advanced features in SPOT are not available for all optimizers.
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Solver Feature MIP GRASP Lagrangian
Minimize mean impact YES YES YES
Minimize worst impact YES YES NO
Minimized number of
sensors

YES NO NO

Robust objectives YES YES NO
Side-constraints YES YES YES
Fixed/Invalid locations YES YES YES
Witness aggregation YES NO YES
Incident probabilities YES NO YES
Incident aggregation YES NO YES
Sparse data
management

NO YES NO

Imperfect sensor model NO YES NO
Computes lower bound YES NO YES
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6 File Formats

6.1 TSO File

• Desription: provides a compact representation of simulation results.

• Format: binary

• Created By: tevasim

• Used By: tso2Impact

• Details: The format of TSO �les is described in C:\spot\doc\TEVAUtil.doc.

6.2 SDX File

• Desription: provides an index into a TSO �le.

• Format: binary

• Created By: tevasim

• Used By: tso2Impact

• Details: SDX �les provide an index �le that contains information about at what byte o�set in which
TSO �le a particular injection scenario's results are located. The format of SDX �les is described in
C:\spot\doc\Threat\ Simulator.doc.

6.3 TSG File

• Desription: speci�es how an ensemble of EPANET simulations will be performed.

• Format: ascii

• Created By: SPOT user

• Used By: tevasim

• Details: Each line of a TSG �le speci�es injection locations, the injection mass, and the injection
time-frame:

NZD MASS <injection-mass> <start-time> <end-time>

This format is described in detail in C:\spot\doc\Threat\ Simulator.doc.

6.4 TAI File

• Desription: describes the information needed for assessing health impacts

• Format: ascii

• Created By: SPOT user
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• Used By: tevasim

• Details: A TAI provides information needed for assessing health impacts. This �le is only required
for impact values like pe that involve health impacts. The format of TAI �les will be described
in C:\spot\doc\threatAssess_readme.txt when health impacts are integrated into the TEVA-SPOT
Toolkit release.

6.5 Sensor Placement File

• Desription: describes one or more sensor placements

• Format: ascii

• Created By: sp

• Used By: evalsensor

• Details:
Lines in a sensor placement �le that begin with the '#' character are assumed to be comments.
Otherwise, lines of this �le have the format

<sp-id> <number-of-sensors> <node-index-1> ...

The sensor placement ID is used to identify sensor placements in the �le. Sensor placements may have
di�ering numbers of sensors, so each line contains this information. The node indices map to values in
the Node File (p. 34).

6.6 Impact File

• Desription: describes the impact of a contamination event at the point that it is witnessed through
a water distribution network.

• Format: ascii

• Created By: tso2Impact

• Used By: sp and evalsensor

• Details: An IMPACT �le describes the impact of a contamination event at the point that it is
witnessed throughout a water distribution network. Speci�cally, the witness events are assumed to
occur at junctions in the network.

The �rst line of an IMPACT �le contains the number of events. The next line speci�es the types of
delayed impacts provided in this �le, with the format:

<number-of-delays> <delay-time1> ... <delay-timeN>

The delay times are in minutes. (Currently, the SPOT utilities only support a single delay time.)

Subsequent lines have the format

<scenario-index> <node-index> <time-of-detection> <impact-value>

The node index is the index of a witness location for the attack. A scenario ID maps to a line in the
network Scenario File (p. 34). A node index maps to a line in the network Node File (p. 34). The
time of detection is in minutes. The value of impacts are in the corresponding units for each impact
measure. The di�erent impact measures in each line correspond to the di�erent delays that have been
computed.
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6.7 LAG File

• Desription: A sparse matrix �le used by the UFL Lagrangian solver

• Format: ascii

• Created By: setupIPData

• Used By: lagrangian

• Details: This is a variant of the IMPACT format. Conceptually, it can be viewed as a transpose of
the matrix speci�ed in an IMPACT �le. The �rst line speci�es the number of locations, the number
of events, and the impact values:

<num-locations> <num-events> <impact>

These impact values di�er from the values in the IMPACT �le, in that they are normalized by the
probability of the event. Subsequent lines describe the impact of each event:

<location> <event> <impact>

Note that the location and event indices are indexed starting at 1.

6.8 Scenario File

• Desription: The scenario �le provides auxillary information about each contamination incident.

• Format: ascii

• Created By: tso2Impact

• Used By: evalsensor

• Details: The scenario �le provides auxillary information about each contamination scenario. Each
line of this �le has the format:

<node-index> <EPANET-ID> <source-type> <source-start-time> <source-stop-time> <source-strength>

The node index maps to the networkNode File (p. 34), and the EPANET ID provides this information
(redundantly). The scenario start and stop are in minutes, and these values are relative to the start
of the EPANET simulation. The source type is the injection mode for an attack, e.g., �ow-paced or
�xed-concentration. The source strength is the concentration of contaminant at the attack source.

6.9 Node File

• Desription: provides a mapping from the indices used for sensor placement to the junction IDs used
within EPANET

• Format: ascii

• Created By: tso2Impact

• Used By: evalsensor and sensor placement solvers

• Details: The node �le provides a mapping from the indices used for sensor placement to the IDs used
within EPANET. Each line of this �le has the format:
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<node-index> <EPANET-ID>

This mapping is generated by tso2Impact (p. 54), and all sensor placement solvers subsequently use
the node indices internally.

6.10 Sensor Placement Con�guration File

• Desription: a con�guration �le used to de�ne a sensor placement problem

• Format: ascii

• Created By: sp

• Used By: setupIPData

• Details: The sensor placement con�guration �le is generated by the sp (p. 48) solver interface, and it
contains all of the information that is needed to de�ne a sensor placement problem. The �le has the
following format:

<number-of-junctions> <response-delay>

<number-of-goals>

<goal-name> <goal-filename> <compression-threshold> <compression-percentage> <attack-collapse-flag>\

<number-of-measures>\

<measure-name> ... <measure-name> <objective-flag>\

<bound-value> ... <bound-value>

<fixed-sensor-placements>

<invalid-sensor-placements>

<cost-values>

The values in this �le correspond to the command-line arguments of the sp (p. 48) solver. Compression
threshold or percentage refers to node aggregation values. The attack-collapse-�ag is a 0 or 1 value in
the con�guration �le, indicating whether compression/aggregation can make an attack trivial (single
supernode equivalent to no detection). The <�xed-sensor-placements>, <invalid-sensor-placements>
and <cost-values> data sets are simply an import of the data from the corresponding �les that are
speci�ed within the sp (p. 48) solver interface.

6.11 Sensor Placement Costs File

• Desription: speci�es the costs for installing sensors at di�erent junctions throughout a network

• Format: ascii

• Created By: SPOT user

• Used By: sp

• Details: Each line of this �le has the format:

<EPANET-ID> <cost>

Junctions not explicitly enumerated in this �le are assumed to have zero cost unless the ID '__-
default__' is speci�ed. For example:

__default 1.0

This example would specify that all un-enumerated junctions have a cost of 1.0.
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6.12 Placement Locations File

• Desription: speci�es whether sensor placements are �xed and whether locations are feasible sensor
placement

• Format: ascii

• Created By: SPOT user

• Used By: sp

• Details: Each line of this �le has the format:

<keyword> <EPANET-ID> ... <EPANET-ID>

The valid keywords are feasible, infeasible, �xed and un�xed. These keywords correspond to two
semantic states for each location: (1) the feasibility of sensor placement and (2) whether a sensor
placement is forced. The semantics of these keywords are as follows:

� feasible - the speci�ed locations are feasible and un�xed

� infeasible - the speci�ed locations are infeasible and un�xed

� �xed - the speci�ed locations are constrained to contain a sensor (�xed and feasible)

� un�xed - the speci�ed locations are not constrained to contain a sensor (un�xed and feasible)

The locations are EPANET-IDs from the network model. Additionally, the keyword ALL or ∗ can be
used to specify that all network locations are to be processed.

A location �le is processed sequentially. The initial state is that all locations are feasible and un�xed.
Subsequently, each line updates the state of the locations, given the state de�ned by the previous lines
of this �le. For example, the �le:

infeasible ALL

feasible A B C

makes all locations infeasible except for locations A, B and C. Similarly

fixed ALL

feasible A B C

makes all locations �xed except for locations A, B and C; the feasible keyword has the same semantics
as the un�xed keyword.

6.13 Sensor Class File

• Desription: contains false-negative probabilities for di�erent types of sensors

• Format: ascii

• Created By: SPOT user

• Used By: sp

• Details: The �le has format:

<class id> <false negative probability>

<class id> <false negative probability>

....
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For example, the following �le de�nes a failure class 1, with a false negative rate of 25 percent, and a failure
class 2 with a false negative rate of 50 percent:

1 0.25

2 0.5

....

6.14 Junctions Class File

• Desription: provides the mapping from EPANET junction IDs to failure classes

• Format: ascii

• Created By: EPANET user

• Used By: sp

• Details: When a sensor class �le is being used, the "junction class" �le provides the mapping from
junction (node) id's to failure classes. The format of this �le is:

<node id> <failure class>

<node id> <failure class>

....

For example, supposing that junction 1 is of class 2, junction 2 is of class 1, and junction 3 is of class 1:

1 1

2 2

3 1

....

37



Bibliography

[1] R. Bahadur, W. B. Samuels, W. Grayman, D. Amstutz, and J. Pickus. Pipelinenet: A model for
monitoring introduced contaminants in a distribution system. In Proc. World Water and Environmental

Resources Congress. ASCE, 2003.

[2] J. Berry, R. Carr, W. Hart, V. Leung, C. Phillips, and J. Watson. On the placement of imperfect
sensors in municipal water networks. In Proceedings of the 8th Symposium on Water Distribution

Systems Analysis. ASCE, 2006.

[3] J. Berry, L. Fleischer, W. E. Hart, C. A. Phillips, and J.-P. Watson. Sensor placement in municipal
water networks. J. Water Resources Planning and Management, 131(3):237�243, 2005.

[4] J. Berry, W. E. Hart, C. A. Phillips, J. Uber, and T. Walski. Water quality sensor placement in water
networks with budget constraints. In Proc. World Water and Environment Resources Conference, 2005.

[5] J. Berry, W. E. Hart, C. E. Phillips, J. G. . Uber, and J.-P. Watson. Sensor placement in municiple water
networks with temporal integer prog ramming models. J. Water Resources Planning and Management,
132(4):218�224, 2006.

[6] J. W. Berry, W. E. Hart, and C. A. Phillips. Scalability of integer programming computations for sensor
placement in municipal water networks. In Proc. World Water and Environmental Resources Congress.
ASCE, 2005.

[7] R. Carr, H. Greenberg, W. Hart, G. Konjevod, E. Lauer, H. Lin, T. Morrison, and C. Phillips. Robust
optimization of contaminant sensor placement for community water systems. Mathematical Program-

ming, 107(1):337�356, 2006.

[8] J. R. Chastain, Jr. A Heuristic Methodology for Locating Monitoring Stations to Detect Contamination

Events in Potable Water Distribution Systems. PhD thesis, University of South Florida, 2004.

[9] W. E. Hart, J. Berry, R. Murray, C. A. Phillips, L. A. Riesen, and J.-P. Watson. SPOT: A sensor
placement optimization toolkit for drinking water contaminant warning system design. Technical Report
SAND2007-4393, Sandia National Laboratories, 2007.

[10] P. Mirchandani and R. Francis, editors. Discrete Location Theory. John Wiley and Sons, 1990.

[11] K. Morley, R. Janke, R. Murray, and K. Fox. Drinking water contamination warning systems: Water
utilities driving water research. J. AWWA, pages 40�46, 2007.

[12] R. Murray, J. Berry, and W. E. Hart. Sensor network design for contamination warning systems: Tools
and applications. In Proc. AWWA Water Security Congress, 2006.

[13] R. Murray, J. Uber, and R. Janke. Modeling acute health impacts resulting from ingestion of contami-
nated drinking water. J. Water Resources Planning and Management: Special Issue on Drinking Water

Distribution Systems Security, 2006.

[14] A. Ostfeld and E. Salomons. Optimal layout of early warning detection stations for water distribution
systems security. J. Water Resources Planning and Management, 130(5):377�385, 2004.

[15] A. Ostfeld, J. G. Uber, E. Salomons, J. W. Berry, W. E. Hart, C. A. Phillips, J.-P. Watson, G. Dorini,
P. Jonkergouw, Z. Kapelan, F. di Pierro, S.-T. Khu, D. Savic, D. Eliades, M. Polycarpou, S. R. Ghimire,
B. D. Barkdoll, R. Gueli, J. J. Huang, E. A. McBean, W. James, A. Krause, J. Leskovec, S. Isovitsch,
J. Xu, C. Guestrin, J. VanBriesen, M. Small, P. Fischbeck, A. Preis, M. Propato, O. Piller, G. B. Tra-
chtman, Z. Y. Wu, and T. Walski. The battle of the water sensor networks (BWSN): A design challenge
for engineers and algorithms. J Water Resources Planning and Management, 2007. (submitted).

38



[16] R. T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions. J. of Banking
and Finance, 26(7):1443�1471, 2002.

[17] L. A. Rossman. The EPANET programmer's toolkit for analysis of water distribution systems. In
Proceedings of the Annual Water Resources Planning and Management Conference, 1999. Available at
http://www.epanet.gov/ORD/NRMRL/wswrd/epanet.html.

[18] N. Topaloglou, H. Vladimirou, and S. Zenios. CVaR models with selective hedging for international
asset allocation. J. of Banking and Finance, (26):1535�1561, 2002.

[19] G. B. Trachtman. A �strawman� common sense approach for water quality sensor site selection. In
Proc. 8th Annual Water Distribution System Analysis Symposium, 2006.

[20] USEPA. WaterSentinel System Architecture. Technical report, U.S. Environmental Protection Agency,
2005.

[21] J.-P. Watson, H. J. Greenberg, and W. E. Hart. A multiple-objective analysis of sensor placement
optimization in water networks. In Proc. World Water and Environment Resources Conference, 2004.

[22] J.-P. Watson, W. E. Hart, and R. Murray. Formulation and optimization of robust sensor placement
problems for contaminant warning systems. In Proc. Water Distribution System Symposium, 2006.

39

http://www.epanet.gov/ORD/NRMRL/wswrd/epanet.html


A Executable evalsensor

A.1 Overview

The evalsensor executable is used to compute information about the impact of contamination events for
one (or more) sensor placements.

A.2 Command-Line Help

Usage: evalsensor [options...] <sensor-file> <impact-file1>

[<impact-file2>...]

Usage: evalsensor [options...] none <impact-file1> [<impact-file2>...]

A command to read in one or more sensor placements and summarize their

performance according to various metrics.

options:

--all-locs-feasible A boolean flag that indicates that all locations

are treated as feasible.

--costs A file with the cost information for each

location id.

--debug A boolean flag that adds output information

about each event.

--event-probabilities A file with the probability of the different

contamination scenarios.

--format The type of output that the evaluation will

generate:

cout Generates output that is easily read.

(default)

xls Generates output that is easily

imported into a MS Excel spreadsheet.

xml Generates an XML-formated output that

is used to communicate with the TEVA

GUI. (Not currently supported.)

--gamma The fraction of the tail distribution used to

compute the VaR and TCE performance measures.

(The default value is 0.05).

-h, --help Display usage information

--nodemap A file with the node map information, for

translating node IDs into junction labels.

-r, --responseTime This parameter indicates the number of minutes

that are needed to respond to the detection of a

continant. As the response time increases, the

impact increases because the contaminant affects

the network for a greater length of time. Unit:

minutes.

--sc-probabilities A file with the probability of detection for

each sensor category.

--scs A file with the sensor category information for

each location id.

--version Display version information

arguments:

sensor-file: A sensor placement file, which contains one or more sensor

placements that will be evaluated. If `none' is specified, then

evalsensor will evaluate impacts with no sensors.

impact-file: A file that contains the impact data concerning a

contamination event. If one or more impact files are specified, then

evaluations are performed for each impact separately.
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Note that options like `responseTime' can be specified with the syntax

`--responseTime 10.0' or `--responseTime=10.0'.

A.3 Description

The evalsensor executable takes sensor placements in a Sensor Placement File (p. 33) and evaluates
them using data from an Impact File (p. 33) (or a list of impact �les). This executable measures the
performance of each sensor placement with respect to the set of possible contamination locations.

See Section here (p. 27) for further description of this command.

A.4 Notes

None.
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B Executable �lter_impacts

B.1 Overview

The �lter_impacts script �lters out the low-impact incidents from an impact �le.

B.2 Usage

filter_impacts [options...] <impact-file> <out-file>

B.3 Options

--threshold=<val>

Keep only the incidents whose undetected impact is above a

specified threshold.

--percent=<num>

Keep the <num> percent of the incidents with the worst

undetected impact.

--num=<num>

Keep the <num> incidents with the worst

undetected impact.

--rescale

Rescale the impacts using a log10 scale.

--round

Round input values to the nearest integer.

B.4 Arguments

<impact-file>

The input impact file.

<out-file>

The output impact file.

B.5 Description

The �lter_impacts command reads an impact �le, �lters out the low-impact incidents, rescales the impact
values, and writes out another impact �le.

B.6 Notes

None.
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C Executable PICO

C.1 Overview

The PICO executable used by sp that solves linear programs and mixed-integer linear programs.

C.2 Usage

PICO [options...] <input-file>

C.3 Options

Documentation of PICO options is available from the PICO User Manual, which is available from
http://software.sandia.gov/Acro/PICO.

C.4 Description

PICO is a general-purpose solver for linear and integer programs. This command is not directly used by
the user.

PICO uses public-domain software components, and thus it can be used without licensing restrictions. The
integer programming format used in SPOT is de�ned with the AMPL modeling language. PICO integrates
the GLPK mathprog problem reader, which is compatible with a subset of the AMPL modeling language.
This enables PICO to process an integer programming formulation in SPOT that can also be used with
AMPL.

C.5 Notes

• On large-scale tests, we have noted that PICO's performance is often limited by the performance of
the public-domain LP solvers that it employs. In some cases, we have noted that these solvers can be
over 100 times slower than the state-of-the-art CPLEX LP solver.
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D Executable randomsample

D.1 Overview

The randomsample executable heuristically solves p-median formulations of the sensor placement problem.

D.2 Usage

randomsample <sp-configuration-file> <num-sample> <random-seed>

<impact-file-representation> <time-limit> [<solution-file>]

D.3 Arguments

<sp-configuration-file>

The configuration file generated by the 'sp' script.

<num-sample>

The number of local searches performed by this heuristic.

<random-seed>

A random number seed.

<impact-file-representation>

An integer that indicates how the impact file is stored internally:

0 - sparse and 1 - dense

<time-limit>

A time limit (in seconds) for how long the heuristic should run.

<solution-file>

The name of the output file that contains the solutions found

by this heuristic.

D.4 Description

The sp command runs randomsample to solve p-median sensor sensor placement problems with the GRASP
heuristic. Currently, the following statistics are supported: mean, var (Value At Risk), tce (Tail-Conditional
Expectation), and worst-case.

This command is intended to be only used by the sp script, which drives both heuristic and exact solvers.

D.5 Notes

• The randomsample heuristic currently does not support side constraints other than on the number of
sensors. Side-constraints are supported by the sideconstraints (p. 47) executable.
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E Executable scenarioAggr

E.1 Overview

The scenarioAggr executable takes an IMPACT �le and produces an aggregated impact �le.

E.2 Usage

scenarioAggr --numEvents=<num_incidents> <impact file>

E.3 Options

--numEvents=<number>

The number of incidents that should be aggregated.

E.4 Description

The scenarioAggr executable reads an IMPACT �le, �nds similar incidents, combines them, and writes
out another IMPACT �le. The convention is to prepend the string "aggr" to the output.

The following �les are generated during the execution of scenarioAggr, assuming that the input was named
"network.impact":

• aggrnetwork.impact - the new Impact File (p. 33)

• aggrnetwork.impact.prob - the probabilities of the aggregated incidents. These are non-uniform, so
any solver must recognize incident probabilities.

E.5 Notes

• Not all solvers in SPOT can perform optimization with aggregated IMPACT �les. In particular,
the heuristic GRASP solver does not currently support aggregation because it does not use incident
probabilities. The Lagrangian and PICO solvers support incident aggregation. However, initial results
suggest that although the number of incidents is reduced signi�cantly, the number of impacts may not
be, and solvers may not run much faster.
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F Executable setupIPData

F.1 Overview

The setupIPData executable is used by the sp solver interface to setup an integer programming formulation
for sensor placement.

F.2 Usage

setupIPData <sp-config-file>

F.3 Arguments

<sp-config-file>

Contains all of the information needed to setup a sensor placement

problem.

F.4 Description

The setupIPData executable is used by sp (p. 48) to setup an integer programming problem for sensor
placement that can be solved using the GeneralSP IP model. The input �le used by setupIPData is a
Sensor Placement Con�guration File (p. 35). The output of this executable is sent to standard out,
and it is in a format that can be processed by PICO (p. 43) and the AMPL solver interface.

F.5 Notes

• This executable is not meant to be run interactively.

• The scalability of this solver has not been well-characterized for large datasets, even when using ag-
gressive aggregation.

46



G Executable sideconstraints

G.1 Overview

The sideconstraints executable heuristically solves p-median formulations of the sensor placement problem
where one or more side-constraints are speci�ed. These side constraints are tight, meaning that any solution
that violates the side constraints is considered infeasible.

G.2 Usage

sideconstraints <sp-configuration-file> <num-samples> <random-seed>

<impact-file-representation> <time-limit> [<solution-file>]

G.3 Arguments

<sp-configuration-file>

The configuration file generated by the `sp' script.

<num-sample>

The number of local searches performed by this heuristic.

<random-seed>

A random number seed.

<impact-file-representation>

An integer that indicates how the impact file is stored internally:

0 - sparse and 1 - dense

<time-limit>

A time limit (in seconds) for how long the heuristic should run.

<solution-file>

The name of the output file that contains the solutions found

by this heuristic.

G.4 Description

The sp command runs sideconstraints to solve p-median sensor placement problems that include side-
constraints with the GRASP heuristic. Currently, the following statistics are supported: mean, var (Value
At Risk), tce (Tail-Conditional Expectation), and worst-case.

G.5 Notes

None.
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H Executable sp

H.1 Overview

The sp executable provides a common interface for sensor placement solvers in TEVA-SPOT.

H.2 Command-Line Help

Usage: sp [options]

Options:

-h, --help show this help message and exit

-n NETWORK, --network=NETWORK

Name of network file

--objective=OBJECTIVE

Objective names have the form: <goal>_<statistic>

..The objective goals are:

....cost the cost of sensor placement

....ec extent of contamination

....dec detected extent of contamination

....td time to detection

....dtd detected time to detection

....mc mass consumed

....dmc detected mass consumed

....nfd number of failed detections

....ns the number of sensors

....pe population exposed

....dpe detected population exposed

....pk population killed

....dpk detected population killed

....pd population dosed

....dpd detected population dosed

....vc volume consumed

....dvc detected volume consumed

..The objective statistics are:

....mean the mean impact

....median the median impact

....var value-at-risk of impact distribution

....tce tail-conditioned expectation of imp dist

....cvar approximation to TCE used with IPs

....worst the worst impact

An objective name of the form <goal> is assumed to

refer to the objective <goal>_mean. This option may

be listed more than once.

-r DELAY, --responseTime=DELAY

This parameter indicates the number of minutes that

are needed to respond to the detection of a

contaminant. As the response time increases, the

impact increases because the contaminant affects the

network for a greater length of time. Unit: minutes.

-g GAMMA, --gamma=GAMMA

Specifies the fraction of the distribution of impacts

that will be used to compute the var, cvar and tce

measures. Gamma is assumed to lie in the interval

(0,1]. It can be interpreted as specifying the

100*gamma percent of the worst contamination incidents

that are used for these calculations. Default: .05

--imperfect-scfile=SCFILE

Specifies the name of a file defining detection

probabilities for all sensor categories. Used with the

imperfect-sensor model. Must be specified in

conjunction with the --imperfect-jcfile option.
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--imperfect-jcfile=JCFILE

Specifies the name of a file defining a sensor

category for each network junction. Used with the

imperfect-sensor model. Must be specified in

conjunction with the --imperfect-scfile option.

--num=NUMSAMPLES, --numsamples=NUMSAMPLES

Specifies the number of candidate solutions generated

by the grasp heuristic. Defaults vary based on

statistic and sensor model formulation (perfect vs.

imperfect).

--grasp-representation=GRASP_REPRESENTATION

Specifies whether the grasp heuristic uses a sparse

matrix (0) or dense matrix (1) representation to store

the impact file contents. The default is 1.

--impact-dir=IMPACT_DIRECTORY

Specifies the directory the contains impact files. By

default the current directory is used.

--aggregation-threshold=AGGREGATION_THRESHOLD, --threshold=AGGREGATION_THRESHOLD

Specifies the value (as `<goal>,<value>') used to

aggregate `similar' impacts. This is used to reduce

the total size of the sensor placement formulation

(for large problems). The solution generated with non-

zero thresholds is not guaranteed to be globally

optimal.

--aggregation-percent=AGGREGATION_PERCENT, --percent=AGGREGATION_PERCENT

A `<goal>,<value>' pair where value is a double

between 0.0 and 1.0. This is an alternate way to

compute the aggregation threshold. Over all

contamination incidents, we compute the maximum

difference d between the impact of the contamination

incident is not detected and the impact it is detected

at the earliest possible feasible location. We set

the threshold to d * aggregation_percent. If both

threshold and percent are set to valid values in the

command line, percent takes priority.

--aggregation-ratio=AGGREGATION_RATIO

A `<goal>,<value>' pair where value is a double

between 0.0 and 1.0.

--conserve-memory=MAXIMUM_IMPACTS

If location aggregation is chosen, and the original

impact files are very large, you can choose to process

them in a memory conserving mode. For example "--

conserve_memory=10000" requests that while original

impact files are being processed into smaller

aggregated files, no more than 10000 impacts should be

read into memory at any one time. Default is 10000

impacts. Set to 0 to turn this off.

--distinguish-detection=DISTINGUISH_GOAL, --no-event-collapse=DISTINGUISH_GOAL

A goal for which aggregation should not allow events

to become trivial.That is, if the threshold is so

large that all locations, including the dummy, would

form a single superlocation, this forces the dummy to

be in a superlocation by itself. Thus the sensor

placement will distinguish between detecting and not

detecting. This option can be listed multiple times,

to specify multiple goals.Note: the `detected' impact

measures (e.g. dec, dvc) are always distinguished.

--disable-aggregation=DISABLE_AGGREGATION

Disable aggregation for this goal, even at value zero,

which would incur no error. Each witness event will

be in a separate superlocation. This option can be

listed multiple times, to specify multiple goals. You

may list the goal `all' to specify all goals.

--ub-constraint=UB_CONSTRAINT, --ub=UB_CONSTRAINT

This option specifies a constraint (<objective>,<ub-

value>) on the maximal value of an objective type.

This option can be repeated multiple times with

different objectives.

49



--baseline-constraint=BASELINE_CONSTRAINT, --baseline=BASELINE_CONSTRAINT

Baseline constraints are not currently supported.

--reduction-constraint=REDUCTION_CONSTRAINT, --reduction=REDUCTION_CONSTRAINT

Reduction constraints are not currently supported.

--costs=COST_FILE, --costs_ids=COST_FILE

This file contains costs for the installation of

sensors throughout the distribution network. This

file contains id/cost pairs, and default costs can be

specified with the id: __default__.

--costs-indices=COST_INDEX_FILE

This file contains costs for the installation of

sensors throughout the distribution network. This

file contains index/cost pairs, and default costs can

be specified with the index: -1.

--sensor-locations=LOCATIONS_FILE

This file contains information about whether network

ids are feasible for sensor placement, and whether a

sensor placement is fixed at a given location.

--solver=SOLVER This option specifies the type of solver that is used

to find sensor placement(s). The following solver

types are currently supported:

..att_grasp multistart local search heuristic (AT&T)

..snl_grasp TEVA-SPOT license-free grasp clone

..lagrangian lagrangian relaxation heuristic solver

..pico mixed-integer programming solver (PICO)

..glpk mixed-integer programming solver (GLPK)

..picoamp MIP solver with AMPL

..cplexamp commercial MIP solver

The default solver is snl_grasp.

--solver-options=SOLVER_OPTIONS

This option contains solver-specific options for

controlling the sensor placement solver. The options

are added to the solver command line.

--runtime=RUNTIME Terminate the solver after the specified number of

wall clock minutes have elapsed. By default, no limit

is placed on the runtime. Some solvers can provide

their best solution so far at the point of

termination.

--notify=INTERVAL Some solvers can output preliminary solutions while

they are running. This option supplies the interval in

minutes at which candidate solutions should be printed

out.

--compute-bound Only compute a bound on the value of the optimal

solution.

--memmon Summarize the maximum memory used by any of the

executables

--memcheck=MEMCHECKTARGET

This option indicates that valgrind should run on one

or more executables.

..all run on all executables

..solver run on the solver executable

..setupIPData run on setupIPData

..preprocessImpacts run on preprocessImpacts

..evalsensor run on evalsensor

..aggregateImpacts run on aggregateImpacts Output

will be written to memcheck.{name}.{pid} .

--tmp-file=TMP_FILE Name of temporary file prefix used in this

computation. The default name is `<network-name>'.

-o OUTPUT_FILE, --output=OUTPUT_FILE

Name of the output file that contains the sensor

placement. The default name is `<network-

name>.sensors'.

--summary=SUMMARY_FILE

Name of the output file that contains summary

information about the sensor placement.

--format=FORMAT Format of the summary information

--print-log Print the solver output

--path=PATH Add this path to the set of paths searched for
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executables and IP models.

--amplcplexpath=AMPLCPLEXPATH

Look for ampl and cplexamp executables in this

directory. This defaults to a `blank' path, which

implies that the user's system path is used.

--picopath=PICOPATH Look for the PICO executable in this directory. This

defaults to the path used for executables specified

by. the --path option.

--glpkpath=GLPKPATH Look for the GLPK executable in this directory. This

defaults to the path used for executables specified by

the --path option.

--ampl=AMPL The name of the ampl executable (this defaults to

`ampl').

--ampldata=AMPLDATA An auxillary AMPL data file. This option is used when

integrating auxillary information into the AMPL IP

model.

--amplmodel=AMPLMODEL

An alternative AMPL model file. This option is used

when applying a non-standard AMPL model for solving

sensor placement with an IP.

--seed=SEED The value of a seed for the random number generator

used by the solver. This can be used to ensure a

deterministic, repeatable output from the solver.

Should be >= 1.

--eval-all This option specifies that all impact files found will

be used to evaluate the final solution(s).

--debug List status messages while processing.

--gap=GAP TODO gap help string.

--version Print version information for the compiled executables

used by this command.

H.3 Description

The sp executable is a Python script that coordinates the execution of the SPOT sensor placement solvers.
The sp options can �exibly specify the objective to be optimized, as well as constraints on performance/cost
goals.

The sp script currently interfaces with integer programming (IP) solvers, GRASP heuristics, and a La-
grangian heuristic. The IP formulation can be used to �nd globally optimal solutions, the GRASP heuristic
has proven e�ective at �nding optimal solutions to a variety of large-scale applications, and the Lagrangian
heuristic �nds a near-optimal selection while computing a con�dence bound.

The following �les are generated during the execution of sp:

• <tmp�le>.con�g - the Sensor Placement Con�guration File (p. 35)

• <tmp�le>.dat - an AMPL data �le (if using an IP solver)

• <tmp�le>.mod - an AMPL script (if using an IP solver)

• <tmp�le>.log - a log �le that captures the solver output

• <tmp�le>.sensors - a Sensor Placement File (p. 33) that contains the �nal solution

H.4 Notes

• The solvers provided by SPOT do not attempt to minimize the number of sensors that are used. This
can sometimes lead to confusing behavior, especially for worst-case objectives where there may be
di�erent solutions with di�erent numbers of sensors. For small problems, the PICO solver can be used
to solve an auxilliary problem, where the number of sensors is minimized subject to the performance
value that is found when minimizing impact.
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• The heuristic solvers do not currently support the "median" performance measure.

• The IP solvers do not currently support median, var, or tce performance measures.

• The aggregation threshold does not currently impact the problem formulation used by the GRASP
heuristic.

• This solver interface assumes that event likelihoods are uniform. The format for specifying non-uniform
likelihoods remains unresolved.

• Numerical issues have been observed when solving with the PICO solver in some cases. These usually
result in a message that indicates that the solver failed.

• The gamma parameter cannot be varied with snl_grasp or att_grasp.

• The snl_grasp and att_grasp solvers cannot e�ectively minimize the worst-case objective when the
problem is constrained.

• The "ub" option to sp is a misnomer when the Lagrangian solver is selected. The side constraints are
really goal constraints, and therefore the values speci�ed are not true upper bounds. However, we have
decided to keep a consistent usage for both side and goal constraints rather than introducing a new
option.

• The Lagrangian heuristic can now be used with "witness aggregated" problems as the PICO solver
can. This cuts down the required memory in a dramatic way. For example, a problem that caused the
Lagrangian to use 1.8 GB of RAM and run in 20 minutes when unaggregated, was solved with only
27MB of RAM in 20 seconds when aggregated. There is a disadvantage, though. The actual quality of
the witness-aggregated solution of the Lagrangian solver can be 25 percent (or more) worse than the
unaggregated solution. This could be improved in the future.

• The sp executable currently defaults to invoke witness aggregation when the Lagrangian solver is
selected. If you want to turn this feature o�, you must use the disable-aggregation option. To disable
aggregation of all objectives, use the option disable-aggregation=all, as in the example above.
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I Executable tevasim

I.1 Overview

The tevasim executable uses EPANET to perform an ensemble of contaminant transport simulations.

I.2 Command-Line Help

Usage: tevasim [options] <epanet-input-file> <epanet-output-file>

A utility for running an ensemble of water quality simulations, whose results

are stored in a TSO file.

options:

-h, --help Display usage information

--tsg The TSG file used to specify the injection

incidents.

--tsi The TSI file used to specify the injection

incidents.

-v, --tso-version The version of the TSO format that is generated.

--tso The TSO output file.

--version Display version information

arguments:

epanet-input-file: EPANET network file.

epanet-output-file: Output file generated by EPANET.

The tevasim command is used to simulate contamination incidents. This command

uses EPANET to perform an ensemble of contaminant transport simulations,

defined by a TSG File. The following files are generated during the execution

of tevasim:

- a binary TSO file that contains the contamination transport data,

- a binary SDX file that provides an index into the TSO File, and

- an output file that provides a textual summary of the EPANET simulations.

Note that options like `tso' can be specified with the syntax `--tso file.tso'

or `--tso=file.tso'.
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J Executable tso2Impact

J.1 Overview

The tso2Impact executable generates one or more impact �les from a TSO �le.

J.2 Command-Line Help

Usage: tso2Impact [options] <output-prefix> <tso-directory-or-files>

<tai-directory-or-files>

An application that reads a TSO file (and associated TAI file if health

impacts are to be computed) and creates one or more impact files that are used

to formulate sensor placement problems.

options:

--dec If this option is specified, an impact file will

be generated for the `detected extent of

contamination' measure.

--detectionConfidence The number of sensors that must detect an event

before the impacts are calculated. Normally

this is 1 sensor.

-d, --detectionLimit A list of thresholds needed to perform detection

with a sensor. There must be one threshold for

each .tso file. The units of these detection

limits depend on the units of the contaminant

simulated for each TSO file (e.g. number of

cells of a biological agent).

--dmc If this option is specified, an impact file will

be generated for the `detected mass consumed'

measure.

--dpd If this option is specified, an impact file wll

be generated for the `detected population dosed'

measure. This is an intensive measure to

compute.

--dpe If this option is specified, an impact file wll

be generated for the `detected population

exposed' measure. This is an intensive measure

to compute.

--dpk If this option is specified, an impact file wll

be generated for the `detected population

killed' measure. This is an intensive measure

to compute.

--dtd If this option is specified, an impact file will

be generated for the `detected

time-to-detection' measure.

--dvc If this option is specified, an impact file will

be generated for the `detected volume consumed'

measure.

--ec If this option is specified, an impact file will

be generated for the `extent of contamination'

measure.

--epanetin This is used for TSO file versions less than

6.0, when computation of the `ec' objective is

specified. Pipelengths are extracted from the

EPANET input file.

-h, --help Display usage information

--mc If this option is specified, an impact file will

be generated for the `mass consumed' measure.

--nfd If this option is specified, an impact file will

be generated for the `number-of-failed

detections' measure.
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--pd If this option is specified, an impact file wll

be generated for the `population dosed' measure.

This is an intensive measure to compute.

--pe If this option is specified, an impact file wll

be generated for the `population exposed'

measure. This is an intensive measure to

compute.

--pk If this option is specified, an impact file wll

be generated for the `population killed'

measure. This is an intensive measure to

compute.

-r, --responseTime This option indicates the number of minutes that

are needed to respond to the detection of a

continant. As the response time increases, the

impact increases because the contaminant affects

the network for a greater length of time. Unit:

minutes.

--td If this option is specified, an impact file will

be generated for the `time-to-detection'

measure.

--tsoPattern This string specifies a regular expression for

all input TSO files when the files are stored in

a directory.

--vc If this option is specified, an impact file will

be generated for the `volume consumed' measure.

--version Display version information

arguments:

output-prefix: The prefix used for all files generated by tso2Impact.

tso-directory-or-file: This argument indicates either a TSO file or a

directory name for TSO files. If the later, then the filenames must be

specified with the --tsoPattern option.

tai-directory-or-file: This argument indicates a TAI file name. The TAI

input file is a threat_assess input that specifies parameters like

dosage, response, lethality, etc. There should be one TAI file for each

TSO file.

Note that options like `responseTime' can be specified with the syntax

`--responseTime 10.0' or `--responseTime=10.0'.

J.3 Description

The tso2Impact executable generates impact �les that are used for sensor placement. This executable
processes a TSO File (p. 32), which summarizes the result of an EPANET computation. The following �les
are generated during the execution of tso2Impact:

• <output-pre�x>.nodemap - a Node File (p. 34).

• <output-pre�x>.scenariomap - a Scenario File (p. 34).

• <output-pre�x>_<impact-type>.impact - an Impact File (p. 33) for a given impact.

J.4 Notes

• The `�tsoPattern` option allows a set of TSO �les to be speci�ed without explicitly listing all of them
on the command-line. The user speci�es a regular expression, and all �les that match that expression
are included in the analysis.
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K Executable u�

K.1 Overview

The u� executable heuristically solves p-median formulations of the sensor placement problem while also
computing a valid lower bound on the best possible sensor placement value.

K.2 Usage

ufl <sp-configuration-file> <p> [--gap=<fraction>]

[<goal_constraint_data_file> <upper_bound>]*

K.3 Options

--gap=<fraction>

This option tells the solver to stop when the solution is

within a certain percentage of optimal. Let \b icost be the current

best integer solution found and \b lb be the current lower bound.

The solver will stop with <b> (icost - lb)/lb </b> is less that the

gap. For example, if the gap is 0.1, then the solver will stop when

it has a solution that is within 10 percent of optimality.

K.4 Arguments

<sp-configuration-file>

A LAG file that defines impacts for the objective.

<p>

The number of sensors.

<goal_constraint_data_file>

A LAG file that defines impacts for a side-constraint.

<upper_bound>

The upper bound for this side constraint.

K.5 Description

"u�" stands for "uncapacitated facility location," and this code is a Sandia-modi�ed version of the com-
bination of Lagrangian relaxation and the "Volume Algorithm" that is found in the open-source "COIN"
repository (that the PICO solver uses).

The sp executable automatically generates u� commands, including those with goal constraints. The user
speci�es the number of sensors, and sp passes to u� one more than this number. The Lagrangian heuristic
implemented in u� then places the correct number of sensors, and one "dummy" sensor that catches all
undetected events.

Note that the u� command uses LAG File (p. 34) inputs, which are a modi�ed format of impact �les.
These �les are generated by the tso2Impact (p. 54) executable.

As of teva-spot-1.2, u� handles "goal constraints." For example, we may minimize the contaminant mass
consumed subject to the goal of limiting the extent of contamination in pipe feet to a constant such as
15,000. This is di�erent from specifying a side constraint for the "sideconstraints" local search executable.
The latter will reject any solution in which the extent of contamination is greater than 15,000, even if it is
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only 15,001. Many goal constraints may be provided simultaneously, and the Lagrangian solver will attempt
to �nd a solution that honors those constraints. It will report one that has a good combination of primary
objective value and small violations of the goals.

This technology is young, and experience shows that user attempts to make the goal constraints too tight can
confuse the solver. We o�er the following guidance to avoid this problem. Suppose that we wish to use the
Lagrangian heuristic to �nd a good solution that minimizes the average contaminant mass consumed subject
to utility guidelines on the average extent of contamination, and also the average volume of contaminated
water consumed.

1. Using a solver of choice for the particular problem, find single-

objective optimal values for each objective.

2. Using evalsensor, evaluate the single-objective sensor placements

against each of the other objectives. The result is a matrix of

objective values.

3. Determine goal constraints for the secondary objectives by selecting

a value between the optimal single-objective value for that secondary

objective, and its value under the sensor placement obtained by solving

the single-objective problem for the primary objective.

For example, for a real test problem, minimizing the average contaminant mass consumed yielded an objective
value of 638,344 units. Taking the sensor placement obtained from that solve, we found that the average
extent of contamination was 78,037 feet, and the average volume of contaminated water consumed was
282,689 units.

Solving individually for these objectives, we found that the optimal solutions for extent of contamination
and volume consumed were 40,867 and 217,001, respectively. From this information, we decided to apply
goal constraints of 45,000 feet for the extent of contamination, and 250,000 units for the volume consumed.

Minimizing the mass consumed with these two goal constraints, the Lagrangian heuristic found a new sensor
placement that incurred objective values of 678,175 units for mass consumed, 49,016 feet for the extent of
contamination, and 256,615 units for volume consumed. Note that neither goal was strictly met, but each
goal helped improve its related objective value.

We now compare this technology to the side-constrained local search heuristic (the "sideconstraints" exe-
cutable). Each heuristic has advantages and disadvantages. The goal-constrained Lagrangian solver can
handle an arbitrary number of goal constraints, producing a solution that is well balanced, as above. When
we attempt to reproduce the results above using the "sideconstraints" executable, which is currently limited
to only one side constraint, we see the untreated objective su�er. For example, with the same setup as
above, and a side constraint of 50,000 feet for average extent of contamination, the sideconstraints heuristic
produces a solution with an expected mass consumed of 670,399 units, an expected extent of contamination
of 49,827 feet, and an expected volume consumed of 326,943. We see a similar type of result with a single
side constraint on the volume consumed (the extent of contamination increases substantially). The sidecon-
straints code could be extended to handle multiple side constraints, of course, but the neighborhood search
might have di�culty �nding feasible solutions. Since Lagrangian relaxation is a global technique and slightly
infeasible solutions are permitted, we are more likely to �nd a good trade-o�.

However, the Lagrangian heuristic has disadvantages as well. If a particular goal constraint is set too tightly,
the solution can degenerate such that all of the objectives get substantially worse. We do not understand this
phenomenon well yet, and further research into the algorithm itself may be necessary to make this technology
generally usable. For now, it is sometimes necessary to manipulate the values of the goal constraints manually
in order to �nd a good solution.

K.6 Notes

None.
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L LGPL License

The TEVA-SPOT Toolkit software is distributed under the terms of the GNU Lesser General Public License
(LGPL) (see disclaimer at the beginning of this work). For your reference, the GNU LGPL and the GNU
General Public License (GPL), of which the LGPL is a derivative, are included in this appendix. The GNU
LGPL is contained in admin/LICENSE.lgpl. The GNU GPL is contained in the �le admin/LICENSE.gpl.

L.1 GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates

the terms and conditions of version 3 of the GNU General Public

License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser

General Public License, and the "GNU GPL" refers to version 3 of the GNU

General Public License.

"The Library" refers to a covered work governed by this License,

other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided

by the Library, but which is not otherwise based on the Library.

Defining a subclass of a class defined by the Library is deemed a mode

of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an

Application with the Library. The particular version of the Library

with which the Combined Work was made is also called the "Linked

Version".

The "Minimal Corresponding Source" for a Combined Work means the

Corresponding Source for the Combined Work, excluding any source code

for portions of the Combined Work that, considered in isolation, are

based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the

object code and/or source code for the Application, including any data

and utility programs needed for reproducing the Combined Work from the

Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License

without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a

facility refers to a function or data to be supplied by an Application

that uses the facility (other than as an argument passed when the

facility is invoked), then you may convey a copy of the modified

version:
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a) under this License, provided that you make a good faith effort to

ensure that, in the event an Application does not supply the

function or data, the facility still operates, and performs

whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of

this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from

a header file that is part of the Library. You may convey such object

code under terms of your choice, provided that, if the incorporated

material is not limited to numerical parameters, data structure

layouts and accessors, or small macros, inline functions and templates

(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the

Library is used in it and that the Library and its use are

covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license

document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,

taken together, effectively do not restrict modification of the

portions of the Library contained in the Combined Work and reverse

engineering for debugging such modifications, if you also do each of

the following:

a) Give prominent notice with each copy of the Combined Work that

the Library is used in it and that the Library and its use are

covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license

document.

c) For a Combined Work that displays copyright notices during

execution, include the copyright notice for the Library among

these notices, as well as a reference directing the user to the

copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this

License, and the Corresponding Application Code in a form

suitable for, and under terms that permit, the user to

recombine or relink the Application with a modified version of

the Linked Version to produce a modified Combined Work, in the

manner specified by section 6 of the GNU GPL for conveying

Corresponding Source.

1) Use a suitable shared library mechanism for linking with the

Library. A suitable mechanism is one that (a) uses at run time

a copy of the Library already present on the user's computer

system, and (b) will operate properly with a modified version

of the Library that is interface-compatible with the Linked

Version.

e) Provide Installation Information, but only if you would otherwise

be required to provide such information under section 6 of the

GNU GPL, and only to the extent that such information is

necessary to install and execute a modified version of the

Combined Work produced by recombining or relinking the

Application with a modified version of the Linked Version. (If
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you use option 4d0, the Installation Information must accompany

the Minimal Corresponding Source and Corresponding Application

Code. If you use option 4d1, you must provide the Installation

Information in the manner specified by section 6 of the GNU GPL

for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the

Library side by side in a single library together with other library

facilities that are not Applications and are not covered by this

License, and convey such a combined library under terms of your

choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based

on the Library, uncombined with any other library facilities,

conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it

is a work based on the Library, and explaining where to find the

accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions

of the GNU Lesser General Public License from time to time. Such new

versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Library as you received it specifies that a certain numbered version

of the GNU Lesser General Public License "or any later version"

applies to it, you have the option of following the terms and

conditions either of that published version or of any later version

published by the Free Software Foundation. If the Library as you

received it does not specify a version number of the GNU Lesser

General Public License, you may choose any version of the GNU Lesser

General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide

whether future versions of the GNU Lesser General Public License shall

apply, that proxy's public statement of acceptance of any version is

permanent authorization for you to choose that version for the

Library.
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